Ultra-Small, Low-RON, Beyond-the-Rails ${ }^{\text {TM }}$ DPDT Analog Switches

General Description

The MAX14689 ultra-small, low-on-resistance (RON) double-pole/double-throw (DPDT) analog switches feature Beyond-the-Rails ${ }^{\text {M }}$ capability that allows signals from -5.5 V to +5.5 V to pass without distortion, even when the power supply is below the signal range. The low onresistance (0.25Ω) also makes the device ideal for lowdistortion switching applications, such as audio or video.
The MAX14689 is fully specified to operate from a single +1.6 V to +5.5 V power supply. Because of the low supply current requirement, V_{CC} can be provided by a GPIO. When power is not applied, the switches go to a highimpedance mode and all analog signal ports can withstand signals from -5.5 V to +5.5 V . The switch is controlled with a single control bit, CB.

The MAX14689 is available in a $1.2 \mathrm{~mm} \times 1.2 \mathrm{~mm}, 0.4 \mathrm{~mm}$ pitch, 9-bump wafer-level package (WLP) and 10-pin, $2.5 \mathrm{~mm} \times 2.0 \mathrm{~mm}$ TDFN package. It operates over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended temperature range.

Applications

- Smartphones
- Tablets
- Portable Audio/Video Equipment
- Low-Distortion Signal Switches

Benefits and Features

- Distortion-Free Beyond-the-Rails Signaling
- Negative Voltage Audio and Video Signal Capable
- -5.5 V to +5.5 V Analog Signal Range Independent from $V_{C c}$
- On-Resistance 0.25Ω (typ)
- +1.6 V to +5.5 V Single-Supply Range
- Total Harmonic Distortion Plus Noise 0.001\% (typ)
- On-Resistance Flatness 0.001Ω (typ)
- Low Supply Current $40 \mu \mathrm{~A}$ (typ) at 1.6 V
- Can be Powered by GPIO
- High-Impedance Mode when V_{CC} Not Applied
- ESD Protection on COM_
- $\pm 15 \mathrm{kV}$ Human Body Model
- $\pm 10 \mathrm{kV}$ IEC 61000-4-2 Air Gap
- $\pm 8 \mathrm{kV}$ IEC 61000-4-2 Contact
- ESD Protection on NC_ and NO_ - $\pm 15 \mathrm{kV}$ Human Body Model
- Design Flexibility
- Break-Before-Make Operation
- 9-Bump WLP (1.2mm x 1.2 mm) Package
- 10-Pin TDFN ($2.5 \mathrm{~mm} \times 2.0 \mathrm{~mm}$) Package
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Operating Temperature Range

Ordering Information appears at end of data sheet.

Typical Application Circuit/Functional Diagram

Beyond-the-Rails ${ }^{\text {TM }}$ is a trademark of Maxim Integrated
Products, Inc.

Ultra-Small, Low-RON, Beyond-the-Rails ${ }^{\text {™ }}$ DPDT Analog Switches

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Thermal Characteristics (Note 1) WLP

TDFN
Junction-to-Ambient Thermal Resistance (θ_{JA}) $102^{\circ} \mathrm{C} / \mathrm{W}$ Junction-to-Case Thermal Resistance (θ_{JC}) $2.9^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=+1.6 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNIT
POWER SUPPLY							
Power-Supply Range	$\mathrm{V}_{\text {CC }}$			1.6		5.5	V
Power-Supply Rejection Ratio	PSRR	$\mathrm{RCOM}_{-}=32 \Omega, \mathrm{f}=20 \mathrm{kHz}$		80			dB
Supply Current	ICC	$\mathrm{V}_{\mathrm{CC}}=+1.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{CB}}=0 \mathrm{~V}$ or V_{CC}			40	65	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=+4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CB}}=0 \mathrm{~V}$ or V_{CC}			70	125	
ANALOG SWITCH							
Analog Signal Range	V_{NC}, V_{NO} $\mathrm{V}_{\mathrm{COM}}$			-5.5		+5.5	V
On-Resistance	RON	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=0 \mathrm{~V}, \\ & \mathrm{ICOM}_{-}=100 \mathrm{~mA}(\text { Note } 3) \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$		0.25	0.45	Ω
			$\mathrm{V}_{C C}=1.8 \mathrm{~V}$		0.325	0.55	
On-Resistance Match Between Channels	$\Delta \mathrm{RON}$	$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NC}_{-}}=0 \mathrm{~V}$ ICOM_ $=100 \mathrm{~mA}$, between same NC_ and NO_ channel (Note 4)			0.005	0.05	Ω
On-Resistance Flatness	RFLAT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{ICOM}=100 \mathrm{~mA}, \\ & \left.\mathrm{~V}_{\mathrm{COM}}=-5.5 \mathrm{~V} \text { to } \overline{5} .5 \mathrm{~V} \text { (Notes } 5,6\right) \end{aligned}$			0.001	0.01	Ω
NC_ or NO_ Off-Leakage Current	INC_(OFF), INO_(OFF),	$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$, switch open, $\mathrm{V}_{\text {NO_ }}$ or $\mathrm{V}_{\mathrm{NC}}=-5.5$ or +5.5 V $\mathrm{V}_{\mathrm{CO}} \bar{M}_{-}=+5 . \overline{5} \mathrm{~V},-5.5 \mathrm{~V}$, unconnected		-100		+100	nA
COM_ Off-Leakage Current	ICOM_(OFF)	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \mathrm{~V}_{\mathrm{COM}}=-5.5 \mathrm{~V}, 0 \mathrm{~V},+5.5$ V_{NO} or $\mathrm{V}_{\mathrm{NC}}=-5.5 \mathrm{~V},+5.5 \mathrm{~V}$, unconnected		-100		+100	nA

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+1.6 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 2)

Ultra-Small, Low-RON, Beyond-the-Rails ${ }^{\text {™ }}$ DPDT Analog Switches

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+1.6 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNIT
ESD PROTECTION					
COM		Human Body Model	± 15		kV
		IEC 61000-4-2 Air-Gap	± 10		
		IEC 61000-4-2 Contact Discharge	± 8		
NC_, NO_		Human Body Model	± 15		kV
All Other Pins		Human Body Model	± 2		kV

Note 2: All specifications are 100% production tested at $T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Specifications over $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ are guaranteed by design.
Note 3: The same limits apply for $\mathrm{V}_{\text {COM }}=-5.5 \mathrm{~V}$ to +5.5 V and are guaranteed by design.
Note 4: $\Delta \mathrm{R}_{\mathrm{ON}}=\left|\mathrm{R}_{\mathrm{ON}(\mathrm{CH} 1)}-\mathrm{R}_{\mathrm{ON}(\mathrm{CH} 2)}\right|$.
Note 5: Flatness is defined as the difference between the maximum and minimum value of on-resistance, as measured over specified analog signal ranges.
Note 6: Guaranteed by design; not production tested.
Note 7: Between two switches.

Figure 1. Switching Time

Figure 2. Break-Before-Make Interval

OFF-ISOLATION IS MEASURED BETWEEN COM_AND "OFF" NO_ OR NC_ TERMINAL ON EACH SWITCH. OFF-ISOLATION $=20 \log \frac{V_{O U T}}{V_{\text {IN }}}$ 3dB BANDWIDTH IS MEASURED BETWEEN COM_ AND "ON" NO_ OR NC_ TERMINAL ON EACH SWITCH. 3dB BANDWIDTH $=20 \log \frac{V_{\text {VUT }}}{V_{\text {IN }}}$ CROSSTALK IS MEASURED FROM ONE CHANNEL TO THE OTHER CHANNEL. CROSSTALK $=20 \log \frac{V_{\text {OUT }}}{V_{\text {IN }}}$

Figure 3. 3dB Bandwidth, Off-Isolation, and Crosstalk

Ultra-Small, Low-RON, Beyond-the-Rails ${ }^{\text {TM }}$ DPDT Analog Switches

Typical Operating Characteristics

($\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Typical Operating Characteristics (continued)
($\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Pin Configuration

Pin Description

WLP BUMP	TDFN PIN	NAME	FUNCTION
A1	5	NC1	Normally Closed Terminal for Switch 1
A2	7	CB	Digital Control Input. Drive CB low to connect COM_to NC_. Drive CB high to connect COM_ to NO_.
A3	6	NC2	Normally Closed Terminal for Switch 2
B1	3	COM1	Common Terminal for Switch 1
B2	4,9	GND	Ground
B3	8	COM2	Common Terminal for Switch 2
C1	1	NO1	Normally Open Terminal for Switch 1
C2	2	VCC	Supply Voltage Input. Bypass VCC to GND with a 0.1 μ F capacitor as close to the device as possible.
C3	10	NO2	Normally Open Terminal for Switch 2

Ultra-Small, Low-RON, Beyond-the-Rails ${ }^{\text {TM }}$ DPDT Analog Switches

Detailed Description

The MAX14689 is an ultra-small, low on-resistance, high ESD-protected DPDT switch that operates from a +1.6 V to +5.5 V supply, and is designed to pass analog signals such as AC-biased or DC-biased audio and video signals. These switches feature the low on-resistance (RON) necessary for high-performance switching applications. The Beyond-the-Rails signal capability of the MAX14689 allows signals below ground and above vcc to pass without distortion.

Analog Signal Levels

The MAX14689 is bidirectional, allowing NO_, NC_, and COM_ to be configured as either inputs or outputs. The topology of the switches allows the signal to drop below ground without the need of an external negative voltage supply. Note: The devices can also withstand analog signal levels of -5.5 V to +5.5 V when the device is not powered.

Digital Control Input

The MAX14689 provides a single-bit control logic input, CB. CB controls the switch position, as shown in the Typical Application Circuit/Functional Diagram.

Applications Information

Extended ESD Protection

ESD-protection structures are incorporated on all pins to protect against electrostatic discharges up to $\pm 2 \mathrm{kV}$ (HBM) encountered during handling and assembly. COM1 and COM2 are further protected against ESD up to $\pm 15 \mathrm{kV}$ (HBM), $\pm 10 \mathrm{kV}$ (Air-Gap Discharge), and $\pm 8 \mathrm{kV}$ (Contact Discharge) without damage. NO_ and NC_ are protected against ESD up to $\pm 15 \mathrm{kV}$ (HBM) without damage. The ESD structures withstand high ESD both in normal operation and when the device is powered down. After an ESD event, the devices continue to function without latchup.

ESD Test Conditions

ESD performance depends on a variety of conditions. Contact Maxim for a reliability report that documents test methodology and test results.

Human Body Model

Figure 4 shows the Human Body Model. Figure 5 shows the current waveform it generates when discharged into a low impedance. This model consists of a 100 pF capacitor charged to the ESD voltage of interest that is then discharged into the device through a $1.5 \mathrm{k} \Omega$ resistor.

IEC 61000-4-2

The IEC 61000-4-2 standard covers ESD testing and performance of finished equipment. It does not specifically refer to integrated circuits. The major difference between tests done using the HBM and IEC 61000-4-2 is higher peak current in IEC 61000-4-2, because series resistance is lower in the IEC 61000-4-2 model. Hence, the ESD withstand voltage measured to IEC 61000-4-2 is generally lower than that measured using the HBM. Figure 6 shows the IEC 61000-4-2 model and Figure 7 shows the current waveform for the $\pm 8 \mathrm{kV}$, IEC $61000-4$ - 2 , Level 4 , ESD Contact-Discharge Method.

Figure 4. Human Body ESD Test Model

Figure 6. IEC 61000-4-2 ESD Test Model

Ordering Information

PART	PIN-PACKAGE	TOP MARK
MAX14689EWL+T	9 WLP	AKL
MAX14689AETB+T	10 TDFN-EP*	AAF

*EP = Exposed pad
+Denotes lead $(P b)$-free/RoHS-compliant package.
T = Tape and reel.
Chip Information
PROCESS: BiCMOS

Figure 5. Human Body Current Waveform

Figure 7. IEC 61000-4-2 ESD Generator Current Waveform

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
9 WLP	W91J1+1	$\underline{21-0459}$	$\underline{\underline{\text { Refer to }}}$
10 TDFN	T102A2+1C	$\underline{21-100013}$	$\underline{\text { Application }}$

Ultra-Small, Low-RON, Beyond-the-Rails ${ }^{\text {TM }}$ DPDT Analog Switches

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$9 / 13$	Initial release	-
1	$1 / 14$	Added MAX14689EWL+ to Ordering Information	11
2	$12 / 14$	Corrected package code	11
3	$5 / 18$	Updated General Description and Benefits and Features sections, Pin Configuration diagram, Pin Description, Ordering Information, and Package Information tables	$1,2,9,11$

