

GaAs INTEGRATED CIRCUIT

μ PG2010TB

L-BAND SPDT SWITCH

DESCRIPTION

The μ PG2010TB is GaAs MMIC for L-band SPDT (Single Pole Double Throw) switch which were developed for mobile phone and another L-band application.

This device can operate frequency from 0.5 to 2.5 GHz, having the low insertion loss and high isolation.

This device is housed in a 6-pin super minimold package. And this package is able to high-density surface mounting.

FEATURES

Supply voltage : V_{DD} = 2.7 to 3.0 V (2.8 V TYP.)

• Switch control voltage : $V_{cont (H)} = 2.7 \text{ to } 3.0 \text{ V } (2.8 \text{ V TYP.})$

: $V_{cont(L)} = -0.2 \text{ to } +0.2 \text{ V (0 V TYP.)}$

• Low insertion loss : Lins1 = 0.25 dB TYP. @ f = 0.5 to 1.0 GHz, $V_{DD} = 2.8 \text{ V}$, $V_{cont} = 2.8 \text{ V/O V}$

: LINS2 = 0.30 dB TYP. @ f = 2.0 GHz, VDD = 2.8 V, Vcont = 2.8 V/0 V

: Lins3 = 0.35 dB TYP. @ f = 2.5 GHz, VDD = 2.8 V,

V_{cont} = 2.8 V/0 V (Reference value)

• High isolation : ISL1 = 28 dB TYP. @ f = 0.5 to 2.0 GHz, V_{DD} = 2.8 V_{DD

: ISL2 = 25 dB TYP. @ f = 2.5 GHz, V_{DD} = 2.8 V, V_{cont} = 2.8 V/0 V (Reference

value)

• High power : P_{in} (0.1 dB) = +33.0 dBm TYP. @ f = 1.0 GHz, V_{DD} = 2.8 V, V_{cont} = 2.8 V/0 V

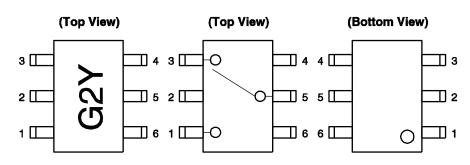
High-density surface mounting: 6-pin super minimold package (2.0 x 1.25 x 0.9 mm)

APPLICATIONS

- · L-band digital cellular or cordless telephone
- PCS, W-LAN, WLL and Bluetooth[™] etc.

ORDERING INFORMATION

Part Number	Package	Marking	Supplying Form
μPG2010TB-E3	6-pin super minimold	G2Y	Embossed tape 8 mm wide
		• Pin 1, 2, 3 face the perforation side of the tape	
			Qty 3 kpcs/reel


Remark To order evaluation samples, contact your nearby sales office.

Part number for sample order: μPG2010TB-A

Caution: Observe precautions when handling because these devices are sensitive to electrostatic discharge

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

PIN CONNECTIONS AND INTERNAL BLOCK DIAGRAM

Pin No.	Pin Name	
1	OUTPUT1	
2	GND	
3	OUTPUT2	
4	Vcont	
5	INPUT	
6	VDD	

TRUTH TABLE

Vcont	INPUT-OUTPUT1	INPUT-OUTPUT2		
Low	ON	OFF		
High	OFF	ON		

ABSOLUTE MAXIMUM RATINGS (TA = +25°C, unless otherwise specified)

Parameter	Symbol	Ratings	Unit
Supply Voltage	V _{DD}	6.0	V
Switch Control Voltage	V _{cont}	6.0	V
Input Power	Pin	+36	dBm
Power Dissipation	Po	150 Note	mW
Operating Ambient Temperature	TA	-45 to +85	°C
Storage Temperature	Tstg	-55 to +150	°C

Note Mounted on double-sided copper-clad $50 \times 50 \times 1.6$ mm epoxy glass PWB, T_A = +85°C

RECOMMENDED OPERATING RANGE (TA = +25°C, unless otherwise specified)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply Voltage	V _{DD}	2.7	2.8	3.0	V
Switch Control Voltage (H)	Vcont (H)	2.7	2.8	3.0	V
Switch Control Voltage (L)	Vcont (L)	-0.2	0	0.2	V

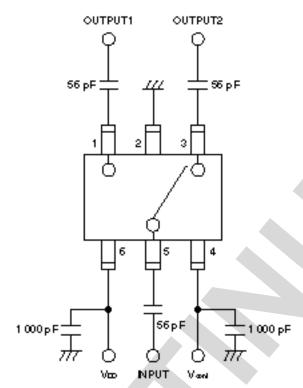
ELECTRICAL CHARACTERISTICS

(TA = +25°C, VDD = 2.8 V, Vcont = 2.8 V/0 V, DC cut capacitors = 56 pF, unless otherwise specified)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Insertion Loss 1	Lins1	f = 0.5 to 1.0 GHz	-	0.25	0.45	dB
Insertion Loss 2	Lins2	f = 2.0 GHz	_	0.30	0.50	dB
Isolation 1	ISL1	f = 0.5 to 2.0 GHz	24	28	-	dB
Input Return Loss	RLin	f = 0.5 to 2.5 GHz	15	20	-	dB
Output Return Loss	RLout	f = 0.5 to 2.5 GHz	15	20	2	dB
0.1 dB Gain Compression Input Power Note	Pin (0.1 dB)	f = 1.0 GHz	+31.5	+33.0	-	dBm
2nd Harmonics	2f ₀	f = 1.0 GHz, Pin = +30.5 dBm	65	75	_	dBc
3rd Harmonics	3fo	f = 1.0 GHz, Pin = +30.5 dBm	65	75	-	dBc
Supply Current	loo		-	50	100	μΑ
Switch Control Current	Icont		-	4	20	μΑ

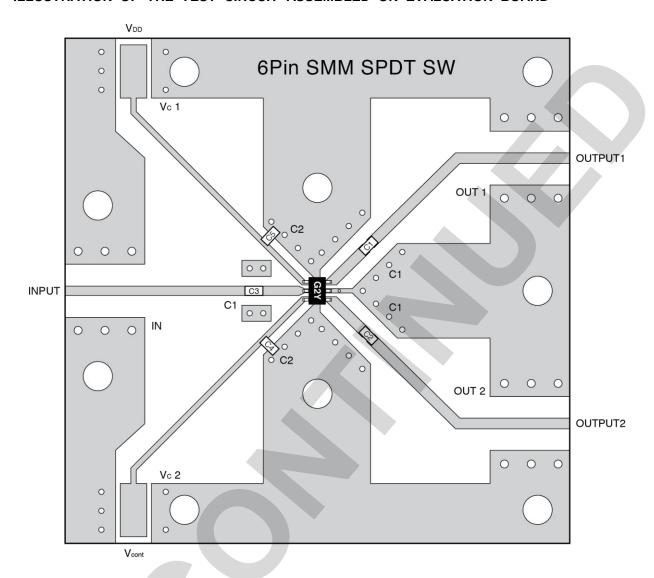
Note Pin (0.1 dB) is measured the input power level when the insertion loss increases more 0.1 dB than that of linear range.

STANDARD CHARACTERISTICS FOR REFERENCE


(TA = +25°C, VDD = 2.8 V, Vcont = 2.8 V/0 V, DC cut capacitors = 56 pF, unless otherwise specified)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Insertion Loss 3	LINS3	f = 2.5 GHz	-	0.35	-	dB
Isolation 2	ISL2	f = 2.5 GHz	-	25	-	dB
Switch Control Speed	tsw		-	1	-	μS

Caution This device is used it is necessary to use DC cut capacitors.

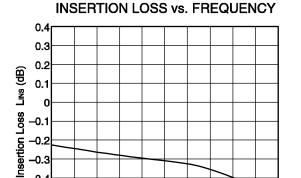

The value of DC cut capacitors should be chosen to accommodate the frequency of operation, bandwidth, switching speed and the condition with actual board of your system. The range of recommended DC cut capacitor value is less than 100 pF.

EVALUATION CIRCUIT (VDD = 2.8 V, Vcont = 2.8 V/0 V, DC cut capacitors = 56 pF)

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

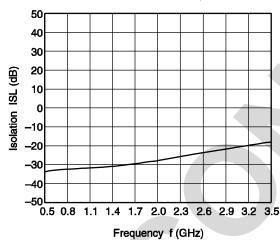
ILLUSTRATION OF THE TEST CIRCUIT ASSEMBLED ON EVALUATION BOARD

USING THE EVALUATION BOARD

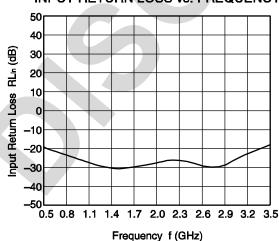

Symbol	Values		
C1, C2, C3	56 pF		
C4, C5	1 000 pF		

TYPICAL CHARACTERISTICS

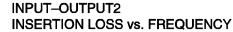
-0.4

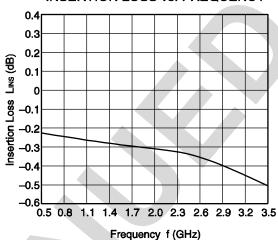

-0.5-0.6 **INPUT-OUTPUT1**

(TA = +25°C, VDD = 2.8 V, Vcont = 2.8 V/0 V, DC cut capacitors = 56 pF, unless otherwise specified)

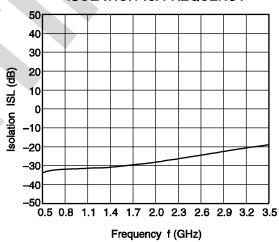


0.5 0.8 1.1 1.4 1.7 2.0 2.3 2.6 2.9 3.2 3.5 Frequency f (GHz)

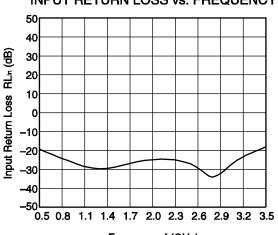

INPUT-OUTPUT1 ISOLATION vs. FREQUENCY



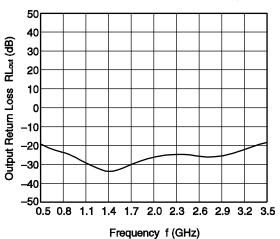
INPUT-OUTPUT1 INPUT RETURN LOSS vs. FREQUENCY



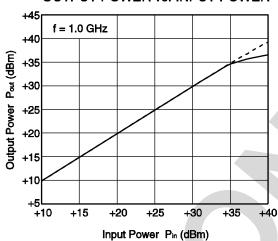
Remark The graphs indicate nominal characteristics.



INPUT-OUTPUT2 ISOLATION vs. FREQUENCY

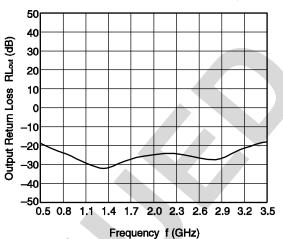


INPUT-OUTPUT2 INPUT RETURN LOSS vs. FREQUENCY

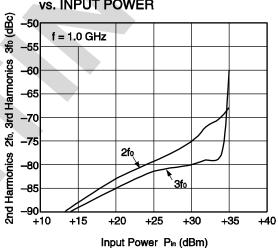


Frequency f (GHz)

INPUT-OUTPUT1 OUTPUT RETURN LOSS vs. FREQUENCY

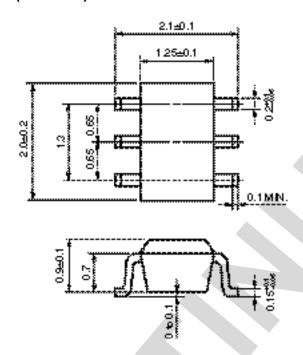


OUTPUT POWER vs. INPUT POWER



Remark The graphs indicate nominal characteristics.

INPUT-OUTPUT2 OUTPUT RETURN LOSS vs. FREQUENCY



2ND HARMONICS, 3RD HARMONICS vs. INPUT POWER

PACKAGE DIMENSIONS

6-PIN SUPTER MINIMOLD (UNIT: mm)

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions		Condition Symbol
Infrared Reflow	Peak temperature (package surface temperature) Time at peak temperature Time at temperature of 220°C or higher Preheating time at 120 to 180°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 60 seconds or less : 120±30 seconds : 3 times : 0.2%(Wt.) or below	IR260
VPS	Peak temperature (package surface temperature) Time at temperature of 200°C or higher Preheating time at 120 to 150°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 215°C or below : 25 to 40 seconds : 30 to 60 seconds : 3 times : 0.2%(Wt.) or below	VP215
Wave Soldering	Peak temperature (molten solder temperature) Time at peak temperature Preheating temperature (package surface temperature) Maximum number of flow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 120°C or below : 1 time : 0.2%(Wt.) or below	WS260
Partial Heating	Peak temperature (pin temperature) Soldering time (per side of device) Maximum chlorine content of rosin flux (% mass)	: 350°C or below : 3 seconds or less : 0.2%(Wt.) or below	HS350

Caution Do not use different soldering methods together (except for partial heating).

Caution

GaAs Products

This product uses gallium arsenide (GaAs).

GaAs vapor and powder are hazardous to human health if inhaled or ingested, so please observe the following points.

- Follow related laws and ordinances when disposing of the product. If there are no applicable laws and/or ordinances, dispose of the product as recommended below.
 - Commission a disposal company able to (with a license to) collect, transport and dispose of materials that contain arsenic and other such industrial waste materials.
 - 2. Exclude the product from general industrial waste and household garbage, and ensure that the product is controlled (as industrial waste subject to special control) up until final disposal.
- Do not burn, destroy, cut, crush, or chemically dissolve the product.
- Do not lick the product or in any way allow it to enter the mouth.

