

CMOS INTEGRATED CIRCUIT

μ PD5731T6M

WIDE BAND SP4T SWITCH

DESCRIPTION

The μ PD5731T6M is a CMOS MMIC SP4T switch which was developed for mobile communications, wireless communications and another RF switching applications.

This device can operate frequency from 0.01 to 2.0 GHz, having the low insertion loss and high isolation.

This device is housed in a 12-pin plastic TSQFN (Thin Small Quad Flat Non-leaded) (T6M) package. And this package is able to high-density surface mounting.

FEATURES

Supply voltage : VDD = 1.5 to 3.6 V (2.8 V TYP.)
 Switch control voltage : Vcont (H) = 1.5 to 3.6 V (2.8 V TYP.)

: $V_{cont}(L) = -0.2 \text{ to } +0.4 \text{ V } (0 \text{ V TYP.})$

• Low insertion loss : Lins1 = 0.7dB TYP. @ f = 0.01 to 0.05 GHz, $V_{DD} = 2.8$ V, $V_{cont}(H) = 2.8$ V, $V_{cont}(L) = 0$ V

: Lins2 = 1.0 dB TYP. @ f = 0.05 to 1.0 GHz, V_{DD} = 2.8 V, $V_{cont (H)}$ = 2.8 V, $V_{cont (L)}$ = 0 V

: Lins 3 = 1.4 dB TYP. @ f = 1.0 to 2.0 GHz, $V_{DD} = 2.8$ V, $V_{cont}(H) = 2.8$ V, $V_{cont}(L) = 0$ V

• High isolation : ISL1 = 60 dB TYP. @ f = 0.01 to 0.05 GHz, $V_{DD} = 2.8$ V, $V_{cont}(H) = 2.8$ V, $V_{cont}(L) = 0$

٧

<R>

<R>

: ISL2 = 35 dB TYP. @ f = 0.05 to 1.0 GHz, VDD = 2.8 V, Vcont(H) = 2.8 V, Vcont(L) = 0 V

: ISL3 = 26 dB TYP. @ f = 1.0 to 2.0 GHz, V_{DD} = 2.8 V, $V_{cont}(H)$ = 2.8 V, $V_{cont}(L)$ = 0 V

Handling power : $P_{in (1 dB)} = +20 dBm TYP$. @ f = 1.0 GHz, $V_{DD} = 2.8 V$, $V_{cont (H)} = 2.8 V$, $V_{cont (L)} = 0 V$

: Pin (0.1 dB) = +17 dBm TYP. @ f = 1.0 GHz, $V_{DD} = 2.8$ V, $V_{cont}(H) = 2.8$ V, $V_{cont}(L) = 0$ V

• High-density surface mounting : 12-pin plastic TSQFN (T6M) package ($2.0 \times 2.0 \times 0.37$ mm)

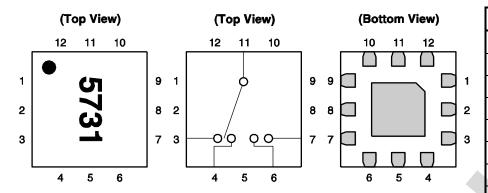
APPLICATIONS

- · Mobile communications
- · Wireless communications
- Another RF switching applications

ORDERING INFORMATION

Part Number	Order Number	Package	Marking	Supplying Form
μPD5731T6M-E2	μPD5731T6M-E2-A	12-pin plastic TSQFN (T6M) (Pb-Free)	5731	 Embossed tape 8 mm wide Pin 10, 11, 12 face the perforation side of the tape
		(TOW) (TD-TTGC)		• Qty 3 kpcs/reel

Remark To order evaluation samples, contact your nearby sales office.


Part number for sample order: µPD5731T6M-A

Caution: Observe precautions when handling because these devices are sensitive to electrostatic discharge

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Document No. PU10717EJ03V0DS (3rd edition) Date Published December 2008 NS

PIN CONNECTIONS AND INTERNAL BLOCK DIAGRAM

Pin No.	Pin Name
1	NC
2	GND
3	OUTPUT1
4	OUTPUT2
5	GND
6	OUTPUT3
7	OUTPUT4
8	GND
9	V _{cont} 1
10	V _{cont} 2
11	INPUT
12	V_{DD}

TRUTH TABLE

ON-state	V _{cont} 1	V _{cont} 2	
INPUT-OUTPUT1	Low	Low	
INPUT-OUTPUT2	Low	High	
INPUT-OUTPUT3	High	Low	
INPUT-OUTPUT4	High	High	

Remark High: +2.8 V, Low: 0 V

ABSOLUTE MAXIMUM RATINGS (TA = +25°C, unless otherwise specified)

Parameter	Symbol	Ratings	Unit
Supply Voltage	V _{DD}	-0.5 to +4.6	V
Switch Control Voltage	Vcont	-0.5 to +4.6	V
Voltage Difference	V _{cont} (H)	+0.5	V
Input Power	Pin	+23	dBm
Operating Ambient Temperature	TA	-45 to +85	°C
Storage Temperature	Tstg	-55 to +150	°C

RECOMMENDED OPERATING RANGE (TA = +25°C, unless otherwise specified)

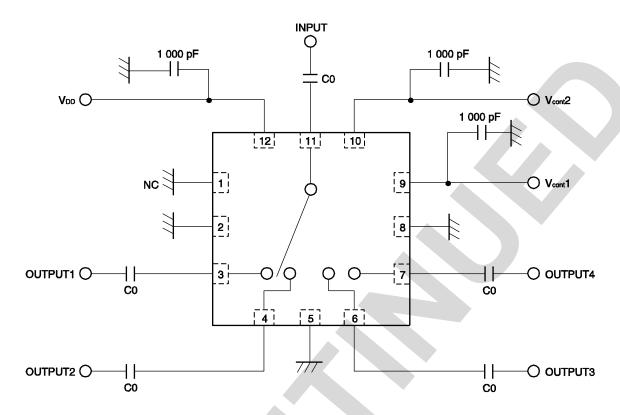
Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply Voltage	V _{DD}	+1.5	+2.8	+3.6	V
Switch Control Voltage (H)	Vcont (H)	+1.5	+2.8	+3.6	V
Switch Control Voltage (L)	Vcont (L)	-0.2	0	+0.4	V

Remark $V_{DD} - 0.4 \text{ V} \leq V_{cont (H)} \leq V_{DD} + 0.2 \text{ V}$

ELECTRICAL CHARACTERISTICS

<R>

<R> <R> <R> <R> (TA = +25°C, VDD = 2.8 V, Vcont (H) = 2.8 V, Vcont (L) = 0 V, Pin = 0 dBm, DC cut capacitors = 10 000 pF, unless otherwise specified)

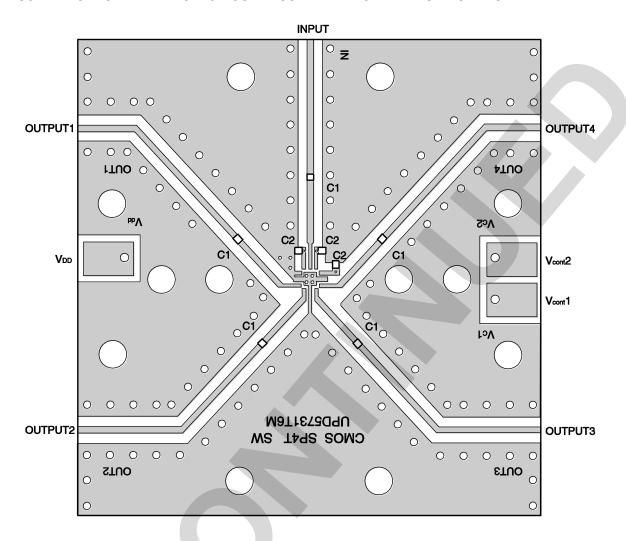

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Insertion Loss 1	Lins1	f = 0.01 to 0.05 GHz	-	0.7	1.1	dB
Insertion Loss 2	Lins2	f = 0.05 to 1.0 GHz	-	1.0	1.4	dB
Insertion Loss 3	Lins3	f = 1.0 to 2.0 GHz	1	1.4	1.8	dB
Isolation 1	ISL1	f = 0.01 to 0.05 GHz	50	60		dB
Isolation 2	ISL2	f = 0.05 to 1.0 GHz	31	35	-	dB
Isolation 3	ISL3	f = 1.0 to 2.0 GHz	23	26	7	dB
Input Return Loss 1	RLin1	f = 0.01 to 1.0 GHz	12	15	7	dB
Input Return Loss 2	RLin2	f = 1.0 to 2.0 GHz	10	12	-	dB
Output Return Loss 1	RLout1	f = 0.01 to 1.0 GHz	12	16	-	dB
Output Return Loss 2	RLout2	f = 1.0 to 2.0 GHz	10	14	-	dB
0.1 dB Loss Compression Input Power Note 1	Pin (0.1 dB)	f = 1.0 GHz	+13	+17	-	dBm
1 dB Loss Compression Input Power Note 2	Pin (1 dB)	f = 1.0 GHz	_	+20	_	dBm
Supply Current	IDD	V _{DD} = V _{cont} = 2.8 V, RF off	=	0.01	1.0	μΑ
Switch Control Current	Icont	V _{DD} = V _{cont} = 2.8 V, RF off	_	0.01	1.0	μΑ
Switch Control Speed	tsw	f = 1.0 GHz	_	30	100	ns

- **Notes 1.** Pin (0.1 dB) is measured the input power level when the insertion loss increases more 0.1 dB than that of linear range.
 - 2. Pin (1 dB) is measured the input power level when the insertion loss increases more 1 dB than that of linear range.

Caution This device is used it is necessary to use DC cut capacitors.

The value of DC cut capacitors should be chosen to accommodate the frequency of operation, bandwidth, switching speed and the condition with actual board of your system.

EVALUATION CIRCUIT

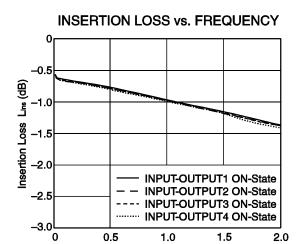


Remark C0 = 10 000 pF

Caution This IC has pull down resistance between RF line and GND, which fixes electric potential of RF line to 0 V, then the IC cannot be used for DC switching.

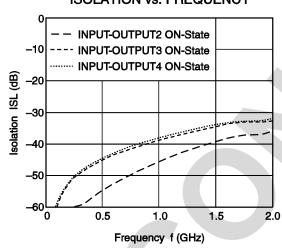
The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

<R> ILLUSTRATION OF THE TEST CIRCUIT ASSEMBLED ON EVALUATION BOARD

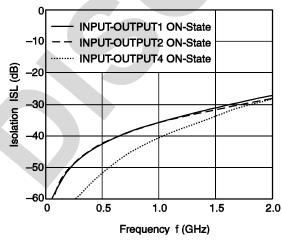


<R> USING THE EVALUATION BOARD

Symbol	Values
C2	1 000 pF
C1	10 000 pF

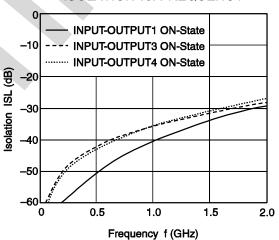

<R> TYPICAL CHARACTERISTICS

(TA = +25°C, VDD = 2.8 V, Vcont (H) = 2.8 V, Vcont (L) = 0 V, Pin = 0 dBm, DC cut capacitors = 10 000 pF, unless otherwise specified)

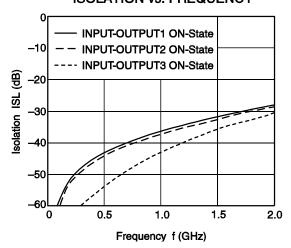


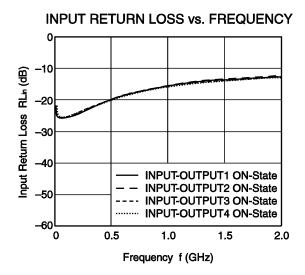
INPUT-OUTPUT1 • ISOLATION vs. FREQUENCY

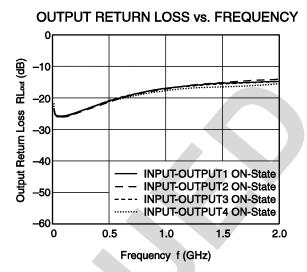
Frequency f (GHz)

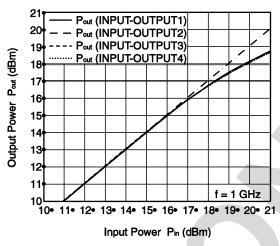


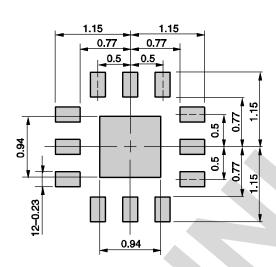
INPUT-OUTPUT3 • ISOLATION vs. FREQUENCY



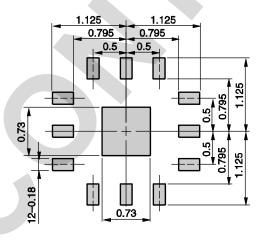

Remark The graphs indicate nominal characteristics.


INPUT-OUTPUT2 • ISOLATION vs. FREQUENCY


INPUT-OUTPUT4 • ISOLATION vs. FREQUENCY



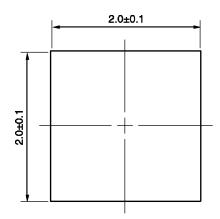
Remark The graphs indicate nominal characteristics.

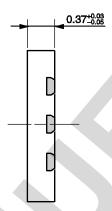

MOUNTING PAD AND SOLDER MASK LAYOUT DIMENSIONS

12-PIN PLASTIC TSQFN (T6M) (UNIT: mm)

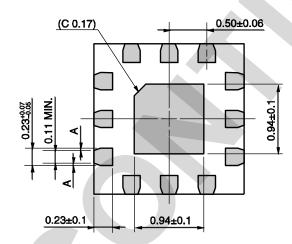
MOUNTING PAD

SOLDER MASK




Solder thickness: 0.1 mm

Remark The mounting pad and solder mask layouts in this document are for reference only.


PACKAGE DIMENSIONS

12-PIN PLASTIC TSQFN (T6M) (UNIT: mm)

(Bottom View)

Remark A > 0

(): Reference value

<R> RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions		Condition Symbol
Infrared Reflow	Peak temperature (package surface temperature) Time at peak temperature Time at temperature of 220°C or higher Preheating time at 120 to 180°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 60 seconds or less : 120±30 seconds : 3 times : 0.2%(Wt.) or below	IR260
Partial Heating	Peak temperature (terminal temperature) Soldering time (per side of device) Maximum chlorine content of rosin flux (% mass)	: 350°C or below : 3 seconds or less : 0.2%(Wt.) or below	HS350

Caution Do not use different soldering methods together (except for partial heating).

