FEATURES

- LOW CURRENT CONSUMPTION

Icc $=1.9 \mathrm{~mA}$ TYP @ Vcc=3.0 V

- SUPPLY VOLTAGE:

Vcc $=2.4$ to 3.3 V

- EXCELLENT ISOLATION:

ISOL $=39 \mathrm{~dB}$ TYP @ $\mathrm{f}=1.0 \mathrm{GHz}$
ISOL $=40 \mathrm{~dB}$ TYP @ $\mathrm{f}=1.9 \mathrm{GHz}$
ISOL = 38 dB TYP @ $\mathrm{f}=2.4 \mathrm{GHz}$

- POWER GAIN:
$\mathrm{GP}=11.0 \mathrm{~dB}$ TYP @ $\mathrm{f}=1.0 \mathrm{GHz}$
GP = 11.5 dB TYP @ $\mathrm{f}=1.9 \mathrm{GHz}$
GP = 11.5 dB TYP @ $\mathrm{f}=2.4 \mathrm{GHz}$
- OPERATING FREQUENCY:
0.1 to 2.4 GHz (Output port LC matching)
- 1 dB GAIN COMPRESSION OUTPUT POWER:
$\mathrm{PO}(1 \mathrm{~dB})=-4.0 \mathrm{dBm}$ TYP @ $\mathrm{f}=1.0 \mathrm{GHz}$
$\mathrm{PO}(1 \mathrm{~dB})=-7.0 \mathrm{dBm}$ TYP @ $\mathrm{f}=1.9 \mathrm{GHz}$
$\mathrm{Po}(1 \mathrm{~dB})=-7.5 \mathrm{dBm}$ TYP @ $\mathrm{f}=2.4 \mathrm{GHz}$
- HIGH-DENSITY SURFACE MOUNTING:

6-pin super minimold package ($2.0 \times 1.25 \times 0.9 \mathrm{~mm}$)

- LOW WEIGHT:

7 mg (Standard Value)

APPLICATIONS

- Buffer Amplifiers on 0.1 to 2.4 GHz mobile communications system

ELECTRICAL CHARACTERISTICS

POWER GAIN vs. FREQUENCY

DESCRIPTION

The UPC8178TB is a silicon monolithic integrated circuit designed as an amplifier for mobile communications. This IC can realize low current consumption with an external chip inductor which cannot be realized on an internal 50Ω wideband matched IC. This low current amplifier operates on 3.0 V . This device is manufactured using NEC's 30 GHz fmax UHSO (Ultra High Speed Process) silicon bipolar process which uses direct silicon nitride passivation film and gold electrodes. These materials can protect the chip surface from pollution and prevent corrosion/migration. Thus, this IC has excellent performance, uniformity and reliability.
NEC's stringent quality assurance and test procedures ensure the highest reliability and performance.
($\mathrm{TA}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=\mathrm{Vout}=3.0 \mathrm{~V}, \mathrm{Zs}=\mathrm{ZL}=50 \Omega$, at LC matched frequency unless otherwise specified))

PART NUMBER PACKAGE OUTLINE					$\begin{aligned} & \text { UPC8178TB } \\ & \text { S06 } \end{aligned}$		
SYMBOLS	PARAMETERS AND CONDITIONS ${ }^{1}$			UNITS	MIN	TYP	MAX
Icc	Circuit Current (no signal)			mA	1.4	1.9	2.4
Gp	Power Gain	$f=1.0 \mathrm{GHz}$		dB	9.0	11.0	13.0
		$f=1.9 \mathrm{GHz}$		dB	9.0	11.5	13.5
		$\mathrm{f}=2.4 \mathrm{GHz}$		dB	9.0	11.5	13.5
ISOL	Isolation $\quad$$\mathrm{f}=1.0 \mathrm{GHz}$ $=1.9 \mathrm{GHz}$ $=2.4 \mathrm{GHz}$			dB	34	39	-
				dB	35	40	-
				dB	33	38	-
$\mathrm{Po}(1 \mathrm{~dB})$			$\mathrm{f}=1.0 \mathrm{GHz}$	dBm	-8.0	-4.0	-
	1 dB Gain Compression Output Power		$\mathrm{f}=1.9 \mathrm{GHz}$	dBm	-11.0	-7.0	-
			$\mathrm{f}=2.4 \mathrm{GHz}$	dBm	-11.5	-7.5	-
NF	Noise Figure	$\mathrm{f}=1.0 \mathrm{GHz}$		dB	-	5.5	7.0
		$\mathrm{f}=1.9 \mathrm{GHz}$		dB	-	5.5	7.0
		$\mathrm{f}=2.4 \mathrm{GHz}$		dB	-	5.5	7.0
RLin	Input Return Loss	$\mathrm{f}=1.0 \mathrm{GHz}$		dB	4	7	-
		$\mathrm{f}=1.9 \mathrm{GHz}$		dB	5	8	-
		$\mathrm{f}=2.4 \mathrm{GHz}$		dB	6.5	9.5	-

ABSOLUTE MAXIMUM RATINGS¹

($\mathrm{TA}=+25^{\circ} \mathrm{C}$ unless otherwise specified)

SYMBOLS	PARAMETERS	UNITS	RATINGS
Vcc	Supply Voltage 2	V	3.6
Icc	Circuit Current	mA	15
Pd	Power Dissipation ${ }^{3}$	mW	270
TA	Operating Ambient Temperature	${ }^{\circ} \mathrm{C}$	-40 to +85
TsTG	Storage Temperature	${ }^{\circ} \mathrm{C}$	-55 to +150
PIN	Input Power	dBm	+5

Notes:

1. Operation in excess of any one of these conditions may result in permanent damage.
2. Pins 4 and 6.
3. Mounted on a double-sided copper clad $50 \times 50 \times 1.6 \mathrm{~mm}$ epoxy glass $\mathrm{PWB}, \mathrm{TA}=+85^{\circ} \mathrm{C}$.

RECOMMENDED

OPERATING CONDITIONS

SYMBOLS	PARAMETERS	UNITS	MIN	TYP	MAX
Vcc	Supply Voltage 1	V	2.4	3.0	3.3
TA^{1}	Operating Ambient Temperature	${ }^{\circ} \mathrm{C}$	-40	+25	+85

Note:

1. Same voltage applied to pins 4 and 6.

SERIES PRODUCTS ${ }^{1}\left(\mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{Vcc}=\mathrm{V}_{\text {out }}=3.0 \mathrm{~V}, \mathrm{Zs}=\mathrm{ZL}=50 \Omega\right)$

Parameter Part No.	$\begin{gathered} \text { Icc } \\ (\mathrm{mA}) \end{gathered}$	1.0 GHz output port matching frequency			1.66 GHz output port matching frequency			1.9 GHz output port matching frequency			2.4 GHz output port matching frequency			Marking
		$\begin{aligned} & \text { Gp } \\ & (\mathrm{dB}) \end{aligned}$	$\begin{aligned} & \text { ISOL } \\ & (\mathrm{dB}) \end{aligned}$	$\mathrm{Po}(1 \mathrm{~dB})$ (dBm)	$\begin{gathered} \text { GP } \\ (\mathrm{dB}) \end{gathered}$	$\begin{aligned} & \text { ISOL } \\ & \text { (dB) } \end{aligned}$	$\mathrm{Po}(1 \mathrm{~dB})$ (dBm)	$\begin{array}{\|c} \text { Gp } \\ \text { (dB) } \\ \hline \end{array}$	$\begin{aligned} & \text { ISOL } \\ & \text { (dB) } \end{aligned}$	$\begin{gathered} \mathrm{Po}(1 \mathrm{~dB}) \\ (\mathrm{dBm}) \end{gathered}$	$\begin{aligned} & \text { Gp } \\ & (\mathrm{dB}) \end{aligned}$	$\begin{aligned} & \text { ISOL } \\ & \text { (dB) } \end{aligned}$	$\begin{gathered} \mathrm{Po}(1 \mathrm{~dB}) \\ (\mathrm{dBm}) \\ \hline \end{gathered}$	
UPC8178TB	1.9	11	39	-4.0	-	-	-	11.5	40	-7.0	11.5	38	-7.5	C3B
UPC8179TB	4.0	13.5	44	+3.0	-	-	-	15.5	42	+1.5	15.5	41	+1.0	C3C
UPC8128TB	2.8	12.5	39	-4.0	13	39	-4.0	13	37	-4.0	-	-	-	C2P
UPC8151TB	4.2	12.5	38	+2.5	15	36	+1.5	15	34	+0.5	-	-	-	C2U
UPC8152TB	5.6	23	40	-4.5	19.5	38	-8.5	17.5	35	-8.5	-	-	-	C2V

Note:

1. Typical performance.

PIN FUNCTIONS (Pin Voltage is measured at $\mathrm{Vcc}=3.0 \mathrm{~V}$)

$\begin{array}{\|l\|} \hline \text { Pin } \\ \text { No. } \end{array}$	Pin Name	Applied Voltage (V)	$\begin{array}{\|c} \text { Pin } \\ \text { Voltage } \end{array}$ (V)	Function and Applications	Internal Equivalent Circuit
1	Input		0.91	Signal input pin. An internal matching circuit, configured with resistors, enables a 50Ω connection over a wide band. This pin must be coupled to the signal source with the capacitor for DC out.	
$\begin{aligned} & 2 \\ & 3 \\ & 5 \end{aligned}$	GND	O		Ground pin. This pin should be connected to the system ground with minimum inductance. Ground pattern on the board should be formed as wide as possible. All the ground pins must be connected together with a wide ground pattern to decrease impedance difference.	
4	Output	Voltage same as Vcc through external inductor	-	Signal output pin. This pin is designed as the collector output. Due to the high impedance output, this pin should be externally equipped with LC matching circuit to next stage. For L, a size 1005 chip inductor can be used.	
6	Vcc	2.4 to 3.3		Power supply pin. This pin should be externally equipped with a bypass capacitor to minimize it's impedance.	

EXAMPLE OF TEST CIRCUIT 1 ASSEMBLED ON EVALUATION BOARD

COMPONENT LIST

	$\mathbf{1 . 0} \mathbf{~ G H z}$ Output Port Matching
$\mathrm{C}_{1}, \mathrm{C}_{3}, \mathrm{C}_{5}$	1000 pF
C_{2}	0.75 pF
C_{4}	10 pF
L_{1}	12 nH

TEST CIRCUIT 2 ($\mathrm{f}=1.9 \mathrm{GHz}$)

EXAMPLE OF TEST CIRCUIT 2 ASSEMBLED ON EVALUATION BOARD

COMPONENT LIST

	$\mathbf{1 . 9} \mathbf{~ G H z}$ Output Port Matching
$\mathrm{C}_{1}, \mathrm{C}_{3}, \mathrm{C}_{5}, \mathrm{C}_{6}$	1000 pF
C_{2}	0.5 pF
C_{4}	10 pF
L_{1}	3.9 nH

TEST CIRCUIT 3 ($\mathrm{f}=2.4 \mathrm{GHz}$)

EXAMPLE OF TEST CIRCUIT 3 ASSEMBLED ON EVALUATION BOARD

COMPONENT LIST

	2.4 GHz Output Port Matching
$\mathrm{C}_{1}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}$	1000 pF
C_{3}	10 pF
L 1	1.8 nH
L_{2}	2.7 nH

NOTES:

1. $42 \times 35 \times 0.4 \mathrm{~mm}$ double sided copper clad polyimide board.
2. Solder plated on pattern.
3. Back side: GND pattern.
4.Through holes.

OUTLINE DIMENSIONS (Units in mm)

PACKAGE OUTLINE S06

Note:
All dimensions are typical unless otherwise specified.

PIN CONNECTIONS

PIN NO.	PIN NAME
1	Input
2	GND
3	GND
4	Output
5	GND
6	Vcc

SYSTEM APPLICATION EXAMPLE

Location examples in digital cellular

ORDERING INFORMATION

Part Number	Quantity
UPC8178TB-E3-A	$3 \mathrm{~K} \mathrm{pcs} /$ reel

Note: Embossed tape, 8 mm wide. Pins 1, 2 and 3 face the tape perforation side.
These NEC products are not intended for use in life support devices, appliances, or systems where the malfunction of these products can reasonably be expected to result in personal injury. The customers of CEL using or selling these products for use in such applications do so at their own risk and agree to fully indemnify CEL for all damages resulting from such improper use or sale.

Subject: Compliance with EU Directives

CEL certifies, to its knowledge, that semiconductor and laser products detailed below are compliant with the requirements of European Union (EU) Directive 2002/95/EC Restriction on Use of Hazardous Substances in electrical and electronic equipment (RoHS) and the requirements of EU Directive 2003/11/EC Restriction on Penta and Octa BDE.

CEL Pb-free products have the same base part number with a suffix added. The suffix -A indicates that the device is Pb -free. The -AZ suffix is used to designate devices containing Pb which are exempted from the requirement of RoHS directive (*). In all cases the devices have Pb-free terminals. All devices with these suffixes meet the requirements of the RoHS directive.

This status is based on CEL's understanding of the EU Directives and knowledge of the materials that go into its products as of the date of disclosure of this information.

Restricted Substance per RoHS	Concentration Limit per RoHS (values are not yet fixed)	Concentration contained in CEL devices	
Lead (Pb)	<1000 PPM	- -A	-AZ
Mercury	<1000 PPM	Not Detected	Not Detected
Cadmium	<100 PPM	Not Detected	
Hexavalent Chromium	<1000 PPM	Not Detected	
PBB	<1000 PPM	Not Detected	
PBDE	<1000 PPM	Not Detected	

If you should have any additional questions regarding our devices and compliance to environmental standards, please do not hesitate to contact your local representative.

Important Information and Disclaimer: Information provided by CEL on its website or in other communications concerting the substance content of its products represents knowledge and belief as of the date that it is provided. CEL bases its knowledge and belief on information provided by third parties and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. CEL has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. CEL and CEL suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall CEL's liability arising out of such information exceed the total purchase price of the CEL part(s) at issue sold by CEL to customer on an annual basis.
See CEL Terms and Conditions for additional clarification of warranties and liability.

