Cree[®] Screen Master[®] 4-mm Oval LED S4SMS-RJF/GJF/BJF

PRODUCT DESCRIPTION

CREE 🔶

These oval LEDs are designed for full color video displays and signs for live action events and advertising signs. The oval-shaped radiation pattern and high luminous intensity ensure that these devices are excellent for wide-field-of -view outdoor applications where a wide viewing angle and readability in sunlight are essential.

These lamps are made with an advanced optical-grade epoxy that offers superior high-temperature and highmoisture-resistance performance in outdoor signal and sign applications. The encapsulation resin contains anti-UV material in order to reduce the effects of long-term exposure to direct sunlight.

FEATURES

- Size (mm): 4
- Color and Typical Dominant Wavelength: Red (621nm) Green(527nm) Blue(472nm)
- Luminous Intensity (mcd) S4SMS-RJF: (770-2130) S4SMS-GJF: (2130-5860) S4SMS-BJF: (390-1100)
- Lead Free
- RoHS Compliant

APPLICATIONS

- Electronic Signs & Signals (ESS)
- Full Color video screen
- Motorway Signs
- Variable Message Sign (VMS)
- Advertising signs
- Petrol Signs

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^{\circ}C$)

Items	Symbol	Absolute Max	kimum Rating	Unit
		Red	Blue and Green	
Forward Current	I _F	50 Note1	35	mA
Peak Forward Current Note2	I _{FP}	200	100	mA
Reverse Voltage	V _R	5	5	V
Power Dissipation	P _D	130	140	mW
Operation Temperature	T _{opr}	-40 ~	y +95	°C
Storage Temperature	T _{stg}	-40 ~	+100	°C
Lead Soldering Temperature	T _{sol}	Max. 260°C for 3 sec. max. (3 mm from the base of the epoxy bulb)		
Electrostatic Discharge Classification (MIL-STD-883E)	ESD	Class 2		

Note:

1. For long term performance the drive currents between 10mA and 30mA are recommended. Please contact CREE sales representative for more information on recommended drive conditions.

2. Pulse width ≤ 0.1 msec, duty $\leq 1/10$.

TYPICAL ELECTRICAL & OPTICAL CHARACTERISTICS ($T_{A} = 25^{\circ}C$)

Characteristics	Color	Symbol	Condition	Unit	Minimum	Typical	Maximum
	Red	V _F	I _F = 15 mA	V		2.1	2.6
Forward Voltage	Green	V _F	$I_F = 15 \text{ mA}$	V		2.7	3.4
	Blue	V _F	$I_{F} = 10 \text{ mA}$	V		2.8	3.4
Deveree Comment	Red	I _R	$V_{R} = 5 V$	μA			100
Reverse Current	Blue/Green	I _R	$V_{R} = 5 V$	μA			100
	Red	λ_{D}	$I_{_{\rm F}} = 15 \text{ mA}$	nm	619	621	624
Dominant Wavelength	Green	λ_{D}	$I_F = 15 \text{ mA}$	nm	520	527	535
	Blue	λ_{D}	$I_F = 10 \text{ mA}$	nm	460	472	475
	Red	Iv	$I_{F} = 15 \text{ mA}$	mcd	770	1200	
Peak Luminous Intensity at -10° Note3	Green	I_v	$I_{F} = 15 \text{ mA}$	mcd	2130	3800	
	Blue I _v		$I_{F} = 10 \text{ mA}$	mcd	390	660	
	Red	Iv		mcd		1500	
Peak Luminous Intensity at -10° Note3(Reference)	Green	I_v	$I_F = 20$ mA(R/G/B)	mcd		4600	
((())	Blue I _v			mcd		1300	

Note:

3. Luminnous intensity sorting based on the peak data at -10°.

CREE ≑

INTENSITY BIN LIMIT (RED I_F = 15 mA, GREEN I_F = 15 mA, BLUE I_F = 10 mA INTENSITY MEASUREMENT AT -10°)

Red: S4SMS-RJF					
Bin Code	Sub- bin	Min. (mcd)	Max. (mcd)		
	S1	770	852		
S0	S2	852	934		
50	S3	934	1017		
	S4	1017	1100		
	T1	1100	1205		
то	T2	1205	1310		
10	Т3	1310	1415		
	T4	1415	1520		
	U1	1520	1672		
UO	U2	1672	1824		
00	U3	1824	1976		
	U4	1976	2130		

Green:S4SMS-GJF							
Bin Code	Sub- bin	Max. (mcd)					
	V1	2130	2347				
VO	V2	2347	2564				
VU	V3	2564	2781				
	V4	2781	3000				
	W1	3000	3295				
wo	W2	3295	3590				
VVO	W3	3590	3885				
	W4	3885	4180				
	X1	4180	4600				
XO	X2	4600	5020				
70	Х3	5020	5440				
	X4	5440	5860				

Blue:S4SMS-BJF					
Bin Code	Sub- bin	Min. (mcd)	Max. (mcd)		
	Q1	390	430		
00	Q2	430	470		
Q0	Q3	470	510		
	Q4	510	550		
	R1	550	605		
RO	R2	605	660		
KU	R3	660	715		
	R4	715	770		
	S1	770	852		
S0	S2	852	934		
30	S3	934	1017		
	S4	1017	1100		

• Tolerance of measurement of luminous intensity is $\pm 15\%$

COLOR BIN LIMIT (RED $I_F = 15 \text{ mA}$, GREEN $I_F = 15 \text{ mA}$, BLUE $I_F = 10 \text{ mA}$)

GW

GΧ

Red			Green			
Bin Code	Min.(nm)	Max.(nm)	Bin Code	Min.(nm)	Max.(nm)	
RB	619	624	GM	520	523	
			GN	520.5	523.5	
			GP	522	525	
			GQ	523	526	
			GR	524.5	527.5	
			GS	525.5	528.5	
			GT	527	530	
			GU	528	531	
			GV	529.5	532.5	

Blue		
Bin Code	Min.(nm)	Max.(nm)
BG	460	463
BH	461.5	464.5
BJ	462.5	465.5
BK	464	467
BM	465	468
BN	466.5	469.5
BP	467.5	470.5
BQ	469	472
BR	470	473
BS	471.5	474.5
BT	472	475

 \bullet Tolerance of measurement of dominant wavelength is $\pm 1 \text{ nm}$

530.5

532

533.5

535

ORDER CODE TABLE*

S4SMS-RJF

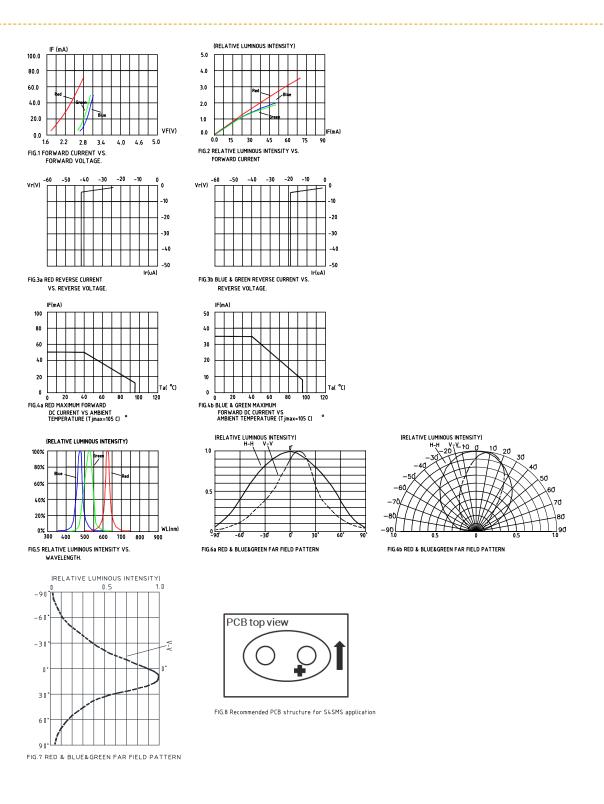
		Luminous Intensity (mcd) Kit Number Min. Max.		Dominant Wavelength				Pack-
Color	Kit Number			Color Bin	Min. (nm)	Color Bin	Max. (nm)	age
Red	S4SMS-RJF-CS0U0BB1	770	2130	RB	619	RB	624	Bulk
Red	S4SMS-RJF-CS12QBB1	Any 2 consecutive sub-bins: S1 (770) - T2 (1310)		RB	619	RB	624	Bulk
Red	S4SMS-RJF-CS32QBB1	Any 2 consecutive sub-bi	ns: S3 (934) - T4 (1520)	RB	619	RB	624	Bulk
Red	S4SMS-RJF-CS0U0BB2	770	2130	RB	619	RB	624	Ammo
Red	S4SMS-RJF-CS12QBB2	Any 2 consecutive sub-bins: S1 (770) - T2 (1310)		RB	619	RB	624	Ammo
Red	S4SMS-RJF-CS32QBB2	Any 2 consecutive sub-bi	ns: S3 (934) - T4 (1520)	RB	619	RB	624	Ammo

S4SMS-GJF

		Luminous Intensity (mcd)		Dominant Wavelength			Pack-	
Color	Kit Number	Min.	Max.	Color Bin	Min. (nm)	Color Bin	Max. (nm)	age
Green	S4SMS-GJF-CV0X0MX1	2130	5860	GM	520	GX	535	Bulk
Green	S4SMS-GJF-CV42QMF1	Any 2 consecutive sub-bin	Any 2 consecutive sub-bins: V4 (2781) - X1 (4600)		Any consecutive 3nm within GM(520) to GX(535)			Bulk
Green	S4SMS-GJF-CW12QMF1	Any 2 consecutive sub-bin	s: W1 (3000) - X2 (5020)	Any consecutive 3nm within GM(520) to GX(535			to GX(535)	Bulk
Green	S4SMS-GJF-CV0X0MX2	2130	5860	GM	520	GX	535	Ammo
Green	S4SMS-GJF-CV42QMF2	Any 2 consecutive sub-bins: V4 (2781) - X1 (4600)) Any consecutive 3nm within GM(520) to GX(535			to GX(535)	Ammo
Green	S4SMS-GJF-CW12QMF2	Any 2 consecutive sub-bin	Any 2 consecutive sub-bins: W1 (3000) - X2 (5020)		Any consecutive 3nm within GM(520) to GX(535)			Ammo

S4SMS-BJF

		Luminous Intensity (mcd)		Dominant Wavelength				Pack-
Color	Kit Number	Min.	Max.	Color Bin	Min. (nm)	Color Bin	Max. (nm)	age
Blue	S4SMS-BJF-CQ0S0GT1	390	1100	BG	460	BT	475	Bulk
Blue	S4SMS-BJF-CQ32QGF1	Any 2 consecutive sub-bins: Q3 (470) - R4 (770)		Any consecutive 3nm within BG(460) to BT(475)				Bulk
Blue	S4SMS-BJF-CQ42QGF1	Any 2 consecutive sub-bi	ins: Q4 (510) - S1 (852)	Any consecutive 3nm within BG(460) to BT(475)			to BT(475)	Bulk
Blue	S4SMS-BJF-CQ0S0GT2	390	1100	BG	460	BT	475	Ammo
Blue	S4SMS-BJF-CQ32QGF2	Any 2 consecutive sub-bins: Q3 (470) - R4 (770)		Any consecutive 3nm within BG(460) to BT(475)			to BT(475)	Ammo
Blue	S4SMS-BJF-CQ42QGF2	Any 2 consecutive sub-bi	ins: Q4 (510) - S1 (852)	Any consecutive 3nm within BG(460) to BT(475)			Ammo	

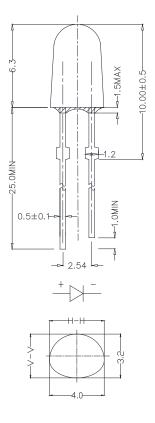

Notes:

- The above kit numbers represent order codes that include multiple intensity-bin and color-bin codes. Only one
 intensity-sub-bin code and one color-bin code will be shipped on each reel. Selected single intensity-bin, single
 color-bin codes will be orderable in certain quantities. For example, any 2 consecutive sub-bins from W1 to X2 mean
 either one combination out of W1-W2,W2-W3,W3-W4,W4-X1,X1-X2 will be shipped by Cree. For example, any onecolor bin from GM to GX means only one color bin (GM or GN or GP or GQ or GR or GS or GT or GU or GV or GW
 or GX) will be shipped by Cree.
- 2. Please refer to the "Cree LED Lamp Reliability Test Standards" document ^{#1} for reliability test conditions.
- Please refer to the "Cree LED Lamp Soldering & Handling" document ^{#2} for information about how to use this LED product safely.
- #1: Refer to http://www.cree.com/led-components/media/documents/LED_Lamp_Reliability_Test_Standard.pdf

#2: Refer to http://www.cree.com/led-components/media/documents/sh-HB.pdf

GRAPHS

The above data are collected from statistical figures that do not necessarily correspond to the actual parameters of each single LED. Hence, these data will be changed without further notice.



MECHANICAL DIMENSIONS

All dimensions are in mm. Tolerance is ± 0.25 mm unless otherwise noted.

An epoxy meniscus may extend about 1.5 mm down the leads.

Burr around bottom of epoxy may be 0.5 mm max.

NOTES

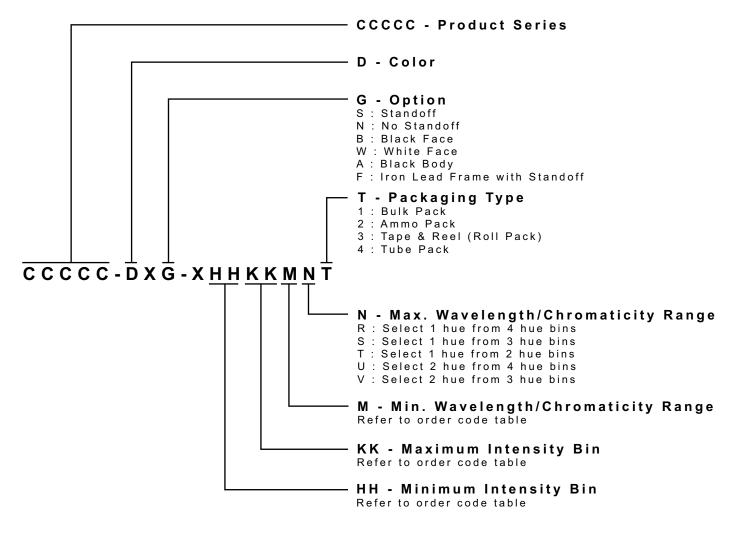
Lead Frame Materials

Ag-plated and Lead-free Solder-plated iron.

RoHS Compliance

The levels of environmentally sensitive, persistent biologically toxic (PBT), persistent organic pollutants (POP), or otherwise restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2002/95/ EC on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS), as amended through April 21, 2006.

Vision Advisory Claim

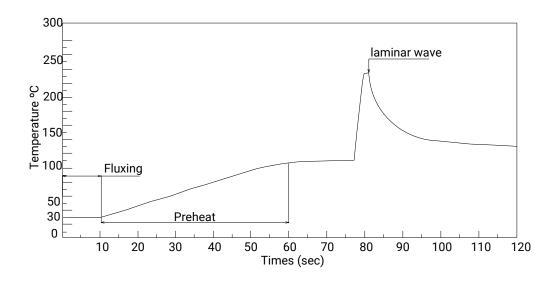

Users should be cautioned not to stare at the light of this LED product. The bright light can damage the eye.

KIT NUMBER SYSTEM

All dimensions in mm.Cree LED lamps are tested and sorted into performance bins. A bin is specified by ranges of color, forward voltage, and brightness. Sorted LEDs are packaged for shipping in various convenient options. Please refer to the "Cree LED Lamp Packaging Standard" document for more information about shipping and packaging options.

Cree LEDs are sold by order codes in combinations of bins called kits. Order codes are configured in the following manner:

* Please contact our sales representative for ordering information.


REFLOW SOLDERING

The LED soldering specification is shown below(suitable for both leaded solder & lead-free solder):

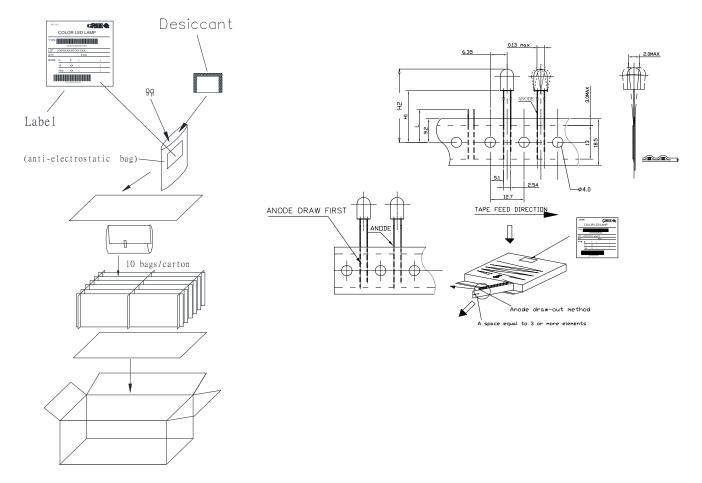
Manual Soldering		Solder Dipping		
Soldering iron	35 W max	Preheat	110 °C max	
Tomporatura	300 ºC max	Preheat time	60 seconds max	
Temperature		Solder-bath temperature	260 °C Max	
Soldering time	3 seconds max	Dipping time	5 seconds max	
Position	Not less than 3 mm from the base of the package.	Position	Not less than 3 mm from the base of the package.	

• Manual soldering onto the PCB is not recommended because soldering time is uncontrollable.

• The recommended wave soldering is as below:

- Do not apply any stress to the LED package, particularly when heated.
- Only bottom preheat is suggested & should not preheat on top in order to reduce thermal stress experienced by the LEDs.
- The LEDs must not be re used once they have been extracted from PCB.
- After soldering the LEDs, the package should be protected from mechanical shock or vibration until the LEDs have reached 40 °C or below.
- Precautions must be taken as mechanical stress on the LEDs may be caused by PCB warpage or from the clinching and cutting of the LED leads.
- When it is necessary to clam the LEDs during soldering, it is important to ensure no mechanical stress is exerted on the LEDs.
- Cut the LED lead at normal room temperature. Lead cutting at high temperature may cause failure of the LEDs.

Refer to "http://www.cree.com/led-components/media/documents/sh-HB.pdf" for soldering & handling details.


PACKAGING

Features:

- The LEDs are packed in cardboard boxes after packaging in normal or anti-electrostatic bags.
- Cardboard boxes will be used to protect the LEDs from mechanical shock during transportation.
- The boxes are not water resistant, and they must be kept away from water and moisture.
- The Bulk Pack types of packaging.
- Max 1000 pcs per bulk and Max 3000 pcs per ammo.

Bulk Pack Packaging Type:

Ammo Pack Packaging Type:

