The S-25C080A is a SPI serial E^{2} PROM which operates at high speed, with low current consumption and the wide range operation. The S-25C080A has the capacity of 8 K-bit and the organization of 1024 words $\times 8$-bit. Page write and sequential read are available.

■ Features

Packages

- 8-Pin SOP (JEDEC)
- 8-Pin TSSOP
- TMSOP-8
- SNT-8A
- WLP-8H

Caution This product is intended to use in general electronic devices such as consumer electronics, office equipment, and communications devices. Before using the product in medical equipment or automobile equipment including car audio, keyless entry and engine control unit, contact to ABLIC Inc. is indispensable.

■ Pin Configurations

1. 8-Pin SOP (JEDEC)

8-Pin SOP (JEDEC)
Top view

Table 1

2. 8-Pin TSSOP

Remark 1. Refer to the "Package drawings" for the details.
2. $x: G$ or U
3. Please select products of environmental code $=U$ for $\mathrm{Sn} 100 \%$, halogen-free products.

3. TMSOP-8

TMSOP-8
Top view

Figure 3
S-25C080AOI-K8T3U

Table 3

Pin No.	Symbol	Description
1	$\overline{\mathrm{CS}}{ }^{* 1}$	Chip select input
2	SO	Serial data output
3	$\overline{\mathrm{WP}}{ }^{* 1}$	Write protect input
4	GND	Ground
5	$\mathrm{SI}^{* 1}$	Serial data input
6	$\mathrm{SCK}^{* 1}$	Serial clock input
7	$\overline{\mathrm{HOLD}^{* 1}}$	Hold input
8	VCC	Power supply

*1. Do not use it in high impedance.

4. SNT-8A

SNT-8A
Top view

Figure 4
S-25C080A0I-I8T1U

Table 4

Pin No.	Symbol	Description
1	$\overline{\mathrm{CS}}{ }^{* 1}$	Chip select input
2	SO	Serial data output
3	$\overline{\mathrm{WP}}{ }^{* 1}$	Write protect input
4	$\mathrm{GND}^{* 1}$	Ground
5	$\mathrm{SI}^{* 1}$	Serial data input
6	$\mathrm{SCK}^{* 1}$	Serial clock input
7	$\overline{\mathrm{HOLD}}^{* 1}$	Hold input
8	VCC	Power supply

*1. Do not use it in high impedance.

5. WLP-8H

WLP-8H
Bottom view

Figure 5
S-25C080AOI-H8T3

Remark Refer to the "Package drawings" for the details.

Block Diagram

Figure 6

■ Absolute Maximum Ratings

Table 6

Item	Symbol	Absolute Maximum Rating	Unit
Power supply voltage	V_{CC}	-0.3 to +7.0	V
Input voltage	$\mathrm{V}_{\text {IN }}$	-0.3 to +7.0	V
Output voltage	$\mathrm{V}_{\mathrm{OUT}}$	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
Operation ambient temperature	$\mathrm{T}_{\text {opr }}$	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {sta }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions.

■ Recommended Operating Conditions

Table 7

Item	Symbol	Condition	$\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min.	Max.	
Power supply voltage	V_{cc}	Read operation	1.6	5.5	V
		Write operation	1.7	5.5	V
High level input voltage	$\mathrm{V}_{1 \mathrm{H}}$	$\mathrm{V}_{C C}=1.6 \mathrm{~V}$ to 5.5 V	$0.7 \times \mathrm{V}_{\mathrm{CC}}$	$\mathrm{V}_{C \mathrm{C}}+1.0$	V
Low level input voltage	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{C C}=1.6 \mathrm{~V}$ to 5.5 V	-0.3	$0.3 \times V_{c c}$	V

■ Pin Capacitance

Table 8

$\left(\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$							
Item	Symbol	Condition	Min.	Max.	Unit		
Input capacitance	C_{IN}	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}(\overline{\mathrm{CS}}, \mathrm{SCK}, \mathrm{SI}, \overline{\mathrm{WP}}, \overline{\mathrm{HOLD}})$	-	8	pF		
Output capacitance	$\mathrm{C}_{\text {OUT }}$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}(\mathrm{SO})$	-	10	pF		

■ Endurance

Table 9

Item	Symbol	Operation Ambient Temperature	Min.	Max.	Unit
Endurance	N_{w}	$\mathrm{Ta}=+25^{\circ} \mathrm{C}$	10^{6}	-	cycles $/ \mathrm{word}^{* 1}$

*1. For each address (Word: 8-bit)

■ Data Retention

Table 10

Item	Symbol	Operation Ambient Temperature	Min.	Max.	Unit
Data retention	-	$\mathrm{Ta}=+25^{\circ} \mathrm{C}$	100	-	year

■ DC Electrical Characteristics

Table 11

Item	Symbol	Condition	$\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$						Unit
			$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=1.6 \mathrm{~V} \text { to } 2.5 \mathrm{~V} \\ \mathrm{f}_{\mathrm{SCK}}=2.0 \mathrm{MHz} \\ \hline \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V} \\ \mathrm{f}_{\mathrm{SCK}}=5.0 \mathrm{MHz} \\ \hline \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ \mathrm{f}_{\mathrm{SCK}}=5.0 \mathrm{MHz} \end{gathered}$		
			Min.	Max.	Min.	Max.	Min.	Max.	
Current consumption (READ)	$\mathrm{I}_{\mathrm{CC} 1}$	No load at SO pin	-	1.5	-	2.0	-	2.5	mA

Table 12

Item	Symbol	Condition	$\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$						Unit
			$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=1.7 \mathrm{~V} \text { to } 2.5 \mathrm{~V} \\ \mathrm{f}_{\mathrm{SCK}}=2.0 \mathrm{MHz} \\ \hline \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V} \\ \mathrm{f}_{\mathrm{SCK}}=5.0 \mathrm{MHz} \\ \hline \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ \mathrm{f}_{\mathrm{SCK}}=5.0 \mathrm{MHz} \end{gathered}$		
			Min.	Max.	Min.	Max.	Min.	Max.	
Current consumption (WRITE)	$\mathrm{l}_{\mathrm{C} 2}$	No load at SO pin	-	2.0	-	2.5	-	3.0	mA

Table 13

Item	Symbol	Condition	$\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$						Unit
			$\mathrm{V}_{\text {CC }}=1.6 \mathrm{~V}$ to 2.5 V		$\mathrm{V}_{C C}=2.5 \mathrm{~V}$ to 4.5 V		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V		
			Min.	Max.	Min.	Max.	Min.	Max.	
Standby current consumption	$\mathrm{I}_{\text {SB }}$	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{SO}=\text { Open } \end{aligned}$ Other inputs are $V_{C C}$ or GND	-	1.5	-	1.5	-	1.5	$\mu \mathrm{A}$
Input leakage current	I_{LI}	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$ to $\mathrm{V}_{\text {CC }}$	-	1.0	-	1.0	-	1.0	$\mu \mathrm{A}$
Output leakage current	Lo	$\mathrm{V}_{\text {OUT }}=\mathrm{GND}$ to $\mathrm{V}_{\text {CC }}$	-	1.0	-	1.0	-	1.0	$\mu \mathrm{A}$
Low level output voltage	$\mathrm{V}_{\text {OL1 }}$	$\mathrm{l}_{\mathrm{OL}}=2.0 \mathrm{~mA}$	-	-	-	0.4	-	0.4	V
	$\mathrm{V}_{\text {OL2 }}$	$\mathrm{l}_{\mathrm{OL}}=1.5 \mathrm{~mA}$	-	0.4	-	0.4	-	0.4	V
High level output voltage	$\mathrm{V}_{\mathrm{OH} 1}$	$\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$	-	-	$0.8 \times \mathrm{V}_{\mathrm{cc}}$	-	$0.8 \times \mathrm{V}_{\mathrm{cc}}$	-	V
	$\mathrm{V}_{\mathrm{OH} 2}$	$\mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$	$0.8 \times \mathrm{V}_{\mathrm{cc}}$	-	$0.8 \times \mathrm{V}_{\mathrm{cc}}$	-	$0.8 \times \mathrm{V}_{\mathrm{cc}}$	-	V

■ AC Electrical Characteristics

Table 14 Measurement Conditions

Input pulse voltage	$0.2 \times \mathrm{V}_{\mathrm{CC}}$ to $0.8 \times \mathrm{V}_{\mathrm{CC}}$
Output reference voltage	$0.5 \times \mathrm{V}_{\mathrm{CC}}$
Output load	100 pF

Table 15

Item	Symbol	$\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$						Unit
		$\mathrm{V}_{\mathrm{CC}}=1.6 \mathrm{~V}$ to 2.5 V		$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ to 4.5 V		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V		
		Min.	Max.	Min.	Max.	Min.	Max.	
SCK clock frequency	$\mathrm{f}_{\text {Sck }}$	-	2.0	-	5.0	-	5.0	MHz
$\overline{\overline{C S}}$ setup time during $\overline{\mathrm{CS}}$ falling	$\mathrm{t}_{\text {css.CL }}$	150	-	90	-	90	-	ns
$\overline{\mathrm{CS}}$ setup time during $\overline{C S}$ rising	$\mathrm{t}_{\mathrm{CSS} . \mathrm{CH}}$	150	-	90	-	90	-	ns
$\overline{\mathrm{CS}}$ deselect time	$\mathrm{t}_{\text {CDS }}$	200	-	90	-	90	-	ns
$\overline{\mathrm{CS}}$ hold time during $\overline{\mathrm{CS}}$ falling	$\mathrm{t}_{\text {CSH.CL }}$	200	-	90	-	90	-	ns
$\overline{\mathrm{CS}}$ hold time during $\overline{\mathrm{CS}}$ rising	$\mathrm{t}_{\text {CSH.CH }}$	150	-	90	-	90	-	ns
SCK clock time "H" *1	$\mathrm{t}_{\mathrm{HIGH}}$	200	-	90	-	90	-	ns
SCK clock time "L" *1	tow	200	-	90	-	90	-	ns
Rising time of SCK clock ${ }^{*}{ }^{2}$	$\mathrm{t}_{\text {RSK }}$	-	1	-	1	-	1	$\mu \mathrm{S}$
Falling time of SCK clock ${ }^{*}$	$\mathrm{t}_{\text {FSK }}$	-	1	-	1	-	1	Hs
SI data input setup time	t_{DS}	50	-	20	-	20	-	ns
SI data input hold time	t_{DH}	60	-	30	-	30	-	ns
SCK "L" hold time during $\overline{\text { HOLD }}$ rising	$\mathrm{t}_{\text {SKH.H\% }}$	150	-	70	-	70	-	ns
SCK "L" hold time during $\overline{\text { HOLD }}$ falling	$\mathrm{t}_{\text {SKH.HL }}$	100	-	40	-	40	-	ns
SCK "L" setup time during HOLD falling	tsks.HL	150	-	60	-	60	-	ns
SCK "L" setup time during $\overline{\text { HOLD }}$ rising	$\mathrm{t}_{\text {sks. }}$ H\%	150	-	60	-	60	-	ns
Disable time of SO output ${ }^{*}$	toz	-	200	-	100	-	100	ns
Delay time of SO output	t_{OD}	-	150	-	70	-	70	ns
Hold time of SO output	t_{OH}	0	-	0	-	0	-	ns
Rising time of SO output ${ }^{\text {2 }}$	t_{RO}	-	100	-	40	-	40	ns
Falling time of SO output ${ }^{2}$	t_{FO}	-	100	-	40	-	40	ns
Disable time of SO output during $\overline{\mathrm{HOLD}}$ falling ${ }^{*}$	toz.hL	-	200	-	100	-	100	ns
Delay time of SO output during HOLD rising ${ }^{* 2}$	tod. H	-	150	-	50	-	50	ns
$\overline{\bar{W} P}$ setup time	$\mathrm{t}_{\text {WS1 }}$	0	-	0	-	0	-	ns
$\overline{\mathrm{WP}}$ hold time	$\mathrm{t}_{\mathrm{WH} 1}$	0	-	0	-	0	-	ns
$\overline{\mathrm{WP}}$ release / setup time	$\mathrm{t}_{\text {WS2 }}$	0	-	0	-	0	-	ns
$\overline{\text { WP }}$ release / hold time	$\mathrm{t}_{\text {WH2 }}$	60	-	30	-	30	-	ns

*1. The clock cycle of the SCK clock (frequency $f_{S C K}$) is $1 / f_{S C K} \mu \mathrm{~s}$. This clock cycle is determined by a combination of several AC characteristics. Note that the clock cycle cannot be set as $\left(1 / f_{\text {SCK }}\right)=t_{\text {LOw }}(\min)+.t_{\text {HIGH }}$ (min.) by minimizing the SCK clock cycle time.
*2. These are values of sample and not 100% tested.

Table 16

Item	Symbol	$\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
		$\mathrm{V}_{\mathrm{CC}}=1.7 \mathrm{~V}$ to 5.5 V		
		Min.	Max.	
Write time	t_{PR}	-	4.0	ms

Figure 7 Serial Input Timing

Figure 8 Hold Timing

Figure 9 Serial Output Timing

Figure 10 Valid Timing in Write Protect

Figure 11 Invalid Timing in Write Protect

■ Pin Functions

1. $\overline{\mathrm{CS}}$ (Chip select input) pin

This is an input pin to set a chip in the select status. In the " H " input level, the device is in the non-select status and its output is high impedance. The device is in standby as long as it is not in Write inside. The device goes in active by setting the chip select to "L". Input any instruction code after power-on and a falling of chip select.

2. SI (Serial data input) pin

This pin is to input serial data. This pin receives an instruction code, an address and Write data. This pin latches data at rising edge of serial clock.

3. SO (Serial data output) pin

This pin is to output serial data. The data output changes according to falling edge of serial clock.

4. SCK (Serial clock input) pin

This is a clock input pin to set the timing of serial data. An instruction code, an address and Write data are received at a rising edge of clock. Data is output during falling edge of clock.

5. WP (Write protect input) pin

Write protect is purposed to protect the area size against the Write instruction (BP1, BPO in the status register). Fix this pin "H" or "L" not to set it in the floating state.
Refer to "■ Protect Operation" for details.

6. HOLD (HOLD input) pin

This pin is used to pause serial communications without setting the device in the non-select status.
In the hold status, the serial output goes in high impedance, the serial input and the serial clock go in "Don't care". During the hold operation, be sure to set the device in active by setting the chip select ($\overline{\mathrm{CS}} \mathrm{pin}$) to "L".
Refer to "■ Hold Operation" for details.

■ Initial Delivery State

Initial delivery state of all addresses is "FFh".
Moreover, initial delivery state of the status register nonvolatile memory is as follows.

- SRWD $=0$
- $\mathrm{BP} 1=0$
- $\mathrm{BPO}=0$

■ Instruction Set

Table 17 is the list of instruction for the S-25C080A. The instruction is able to be input by changing the chip select ($\overline{\mathrm{CS}}$) " H " to " L ". Input the instruction in the MSB first. Each instruction code is organized with 1 -byte as shown below. If the S-25C080A receives any invalid instruction code, the device goes in the non-select status.

Table 17 Instruction Set

| Instruction | Operation | | Instruction Code | Address | |
| :--- | :--- | :---: | :---: | :---: | :---: | Data

*1. Sequential data reading is possible.
*2. The higher addresses A15 to A10 = Don't care.
*3. After outputting data in the specified address, data in the following address is output.

Operation

1. Status register

The status register's organization is below. The status register can Write and Read by a specific instruction.

Figure 12 Organization of Status Register

The status / control bits of the status register as follows.

1. 1 SRWD (b7) : Status Register Write Disable

Bit SRWD operates in conjunction with the Write protect signal ($\overline{\mathrm{WP}}$). With a combination of bit SRWD and signal $\overline{W P}$ (SRWD = "1", $\overline{W P}=$ " L "), this device goes in Hardware Protect status. In this case, the bits composed of the nonvolatile bit in the status register (SRWD, BP1, BPO) go in Read Only, so that the WRSR instruction is not be performed.

1. 2 BP1, BP0 (b3, b2) : Block Protect

Bit BP1 and BP0 are composed of the nonvolatile memory. The area size of Software Protect against WRITE instruction is defined by them. Rewriting these bits is possible by the WRSR instruction. To protect the memory area against the WRITE instruction, set either or both of bit BP1 and BP0 to " 1 ". Rewriting bit BP1 and BP0 is possible unless they are in Hardware Protect mode. Refer to "■ Protect Operation" for details of "Block Protect".

1. 3 WEL (b1) : Write Enable Latch

Bit WEL shows the status of internal Write Enable Latch. Bit WEL is set by the WREN instruction only. If bit WEL is " 1 ", this is the status that Write Enable Latch is set. If bit WEL is " 0 ", Write Enable Latch is in reset, so that the device does not receive the WRITE or WRSR instruction. Bit WEL is reset after these operations;

- The power supply voltage is dropping
- Power-on
- After performing WRDI
- After the Write operation by the WRSR instruction has completed
- After the Write operation by the WRITE instruction has completed

1.4 WIP (b0) : Write In Progress

Bit WIP is Read Only and shows whether the internal memory is in the Write operation or not by the WRITE or WRSR instruction. Bit WIP is " 1 " during the Write operation but " 0 " during any other status. Figure 13 shows the usage example.

Figure 13 Usage Example of WEL, WIP Bits during Write

2. Write enable (WREN)

Before writing data (WRITE and WRSR), be sure to set bit Write Enable Latch (WEL). This instruction is to set bit WEL. Its operation is below.
After selecting the device by the chip select ($\overline{\mathrm{CS}}$), input the instruction code from serial data input (SI). To set bit WEL, set the device in the non-select status by $\overline{\mathrm{CS}}$ at the 8 th clock of the serial clock (SCK). To cancel the WREN instruction, input the clock different from a specified value ($\mathrm{n}=8$ clocks) while $\overline{\mathrm{CS}}$ is in "L".

Figure 14 WREN Operation

3. Write disable (WRDI)

The WRDI instruction is one of ways to reset bit Write Enable Latch (WEL). After selecting the device by the chip select ($\overline{\mathrm{CS}}$), input the instruction code from serial data input (SI).
To reset bit WEL, set the device in the non-select status by $\overline{C S}$ at the 8th clock of the serial clock.
To cancel the WRDI instruction, input the clock different from a specified value ($\mathrm{n}=8$ clocks) while $\overline{\mathrm{CS}}$ is in " L ". Bit WEL is reset after the operations shown below.

- The power supply voltage is dropping
- Power-on
- After performing WRDI
- After the completion of Write operation by the WRSR instruction
- After the completion of Write operation by the WRITE instruction

so
High-Z

Figure 15 WRDI Operation

4. Read the status register (RDSR)

Reading data in the status register is possible by the RDSR instruction. During the Write operation, it is possible to confirm the progress by checking bit WIP.
Set the chip select ($\overline{\mathrm{CS}}$) "L" first. After that, input the instruction code from serial data input (SI). The status of bit in the status register is output from serial data output (SO). Sequential Read is available for the status register. To stop the Read cycle, set $\overline{\mathrm{CS}}$ to " H ".
It is possible to read the status register always. The bits in it are valid and can be read by RDSR even in the Write cycle. The 2 bits WEL and WIP are updated during the write cycle. The updated nonvolatile bits SRWD, BP1 and BP0 can be acquired by performing a new RDSR instruction after verifying the completion of the write cycle.

Figure 16 RDSR Operation

ABLICI

6. Read memory data (Read)

The Read operation is shown below. Input the instruction code and the address from serial data input (SI) after inputting "L" to the chip select ($\overline{\mathrm{CS}}$). The input address is loaded to the internal address counter, and data in the address is output from the serial data output (SO).
Next, by inputting the serial clock (SCK) keeping the chip select ($\overline{\mathrm{CS}}$) in " L ", the address is automatically incremented so that data in the following address is sequentially output. The address counter rolls over to the first address by increment in the last address.
To finish the Read cycle, set $\overline{\mathrm{CS}}$ to " H ". It is possible to raise the chip select always during the cycle. During Write, the read instruction code is not be accepted or operated.

Remark The higher addresses A15 to A10 = Don't care.
Figure 18 Read Operation

7. Write memory data (Write)

Figure 19 shows the timing chart when inputting 1-byte data. Input the instruction code, the address and data from serial data input (SI) after inputting " L " to the chip select ($\overline{\mathrm{CS}}$). To start Write (t_{PR}), set the chip select ($\overline{\mathrm{CS}}$) to "H" after inputting data or before inputting a rising of the next serial clock. Bit WIP and WEL are reset to " 0 " when Write has completed.
The S-25C080A can Page Write of 32 bytes. Its function to transmit data is as same as Byte Write basically, but it operates Page Write by receiving sequential 8 -bit Write data as much data as page size has. Input the instruction code, the address and data from serial data input (SI) after inputting "L" in $\overline{\mathrm{CS}}$, as the Write operation (page) shown in Figure 20. Input the next data while keeping $\overline{\mathrm{CS}}$ in "L". After that, repeat inputting data of 8 -bit sequentially. At the end, by setting $\overline{\mathrm{CS}}$ to " H ", the Write operation starts (t_{PR}).
5 of the lower bits in the address are automatically incremented every time when receiving Write data of 8-bit. Thus, even if Write data exceeds 32 bytes, the higher bits in the address do not change. And 5 of lower bits in the address roll over so that Write data which is previously input is overwritten.

These are cases when the Write instruction is not accepted or operated.

- Bit WEL is not set to " 1 " (not set to " 1 " beforehand immediately before the Write instruction)
- During Write
- The address to be written is in the protect area by BP1 and BP0.

To cancel the Write instruction, input the clock different from a specified value ($\mathrm{n}=24+\mathrm{m} \times 8$ clocks) while $\overline{\mathrm{CS}}$ is in "L".

Remark The higher addresses A15 to A10 = Don't care .
Figure 19 Write Operation (1 Byte)

High-Z

Remark The higher addresses A15 to A10 = Don't care.
Figure 20 Write Operation (Page)

■ Protect Operation

Table 18 shows the block settings of Write protect. Table 19 shows the protect operation for the device. As long as bit SRWD, the Status Register Write Disable bit, in the status register is reset to " 0 " (it is in reset before the shipment), the value of status register can be changed.

These are two statues when bit SRWD is set to " 1 ".

- Write in the status register is possible; Write protect ($\overline{\mathrm{WP}}$) is in " H ".
- Write in the status register is impossible; Write protect ($\overline{\mathrm{WP}}$) is in " L ". Therefore the Write protect area which is set by protect bit (BP1, BP0) in the status register cannot be changed.

These operations are to set Hardware Protect (HPM).

- After setting bit SRWD, set Write protect ($\overline{\mathrm{WP}}$) to " L ".
- Set bit SRWD completed setting Write protect (WP) to "L".

Figure 10 and 11 show the Valid timing in Write protect and Invalid timing in Write protect during the cycle Write to the status register.

By inputting "H" to Write protect ($\overline{\mathrm{WP}}$), Hardware Protect (HPM) is released. If the Write protect ($\overline{\mathrm{WP}}$) is " H ", Hardware Protect (HPM) does not function, Software Protect (SPM) which is set by the protect bits in the status register (BP1, BP0) only works.

Table 18 Block Settings of Write Protect

Status Register		Area of Write Protect	Address of Write Protect Block
BP1	BP0		
0	0	25%	300 h to 3FFh
0	1	50%	200 h to 3FFh
1	0	100%	000 h to 3FFh
1	1		

Table 19 Protect Operation

Mode	\bar{W} Pin	Bit SRWD	Bit WEL	Write Protect Block	General Block	Status Register
	1	X	0	Write disable	Write disable	Write disable
	1	X	1	Write disable	Write enable	Write enable
	X	0	0	Write disable	Write disable	Write disable
Hardware Protect (HPM)	X	0	1	Write disable	Write enable	Write enable
	0	1	0	Write disable	Write disable	Write disable

Remark X = Don't care

Hold Operation

The hold operation is used to pause serial communications without setting the device in the non-select status. In the hold status, the serial data output goes in high impedance, and both of the serial data input and the serial clock go in "Don't care". Be sure to set the chip select ($\overline{C S}$) to " L " to set the device in the select status during the hold status.
Generally, during the hold status, the device holds the select status. But if setting the device in the non-select status, the users can finish the operation even in progress.
Figure 21 shows the hold operation. Set Hold ($\overline{\mathrm{HOLD}}$) to " L " when the serial clock (SCK) is in " L ", Hold ($\overline{\mathrm{HOLD}}$) is switched at the same time the hold status starts. If setting Hold (HOLD) to "H", Hold (HOLD) is switched at the same time the hold status ends.
Set Hold (HOLD) to "L" when the serial clock (SCK) is in "H"; the hold status starts when the serial clock goes in "L" after Hold ($\overline{\mathrm{HOLD}}$) is switched. If setting Hold ($\overline{\mathrm{HOLD}}$) to " H ", the hold status ends when the serial clock goes in "L" after Hold ($\overline{\mathrm{HOLD}}$) is switched.

Figure 21 Hold Operation

Write Protect Function during the Low Power Supply Voltage

The S-25C080A has a built-in detection circuit which operates with the low power supply voltage. The S-25C080A cancels the Write operation (WRITE, WRSR) when the power supply voltage drops and power-on, at the same time, goes in the Write protect status (WRDI) automatically to reset bit WEL. Its detection and release voltages are 1.20 V typ. (Refer to Figure 22).
To operate Write, after the power supply voltage dropped once but rose to the voltage level which allows Write again, be sure to set the Write Enable Latch bit (WEL) before operating Write (WRITE, WRSR).
In the Write operation, data in the address written during the low power supply voltage is not assured.

Figure 22 Operation during Low Power Supply Voltage

- Input Pin and Output Pin

1. Connection of input pin

All input pins in the S-25C080A have the CMOS structure. Do not set these pins in high impedance during operation when you design. Especially, set the $\overline{\mathrm{CS}}$ input in the non-select status " H " during power-on/off and standby. The error Write does not occur as long as the $\overline{\mathrm{CS}}$ pin is in the non-select status " H ". Set the $\overline{\mathrm{CS}}$ pin to V_{CC} via a resistor (the pull-up resistor of $10 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$).
If the $\overline{C S}$ pin and the SCK pin change from " L " to " H " simultaneously, data may be input from the SI pin.
To prevent the error for sure, it is recommended to pull down the SCK pin to GND. In addition, it is recommended to pull up the SI pin, the $\overline{\mathrm{WP}}$ pin and the $\overline{\mathrm{HOLD}}$ pin to V_{Cc}, or pull down these pins to GND, respectively. Connecting the $\overline{\mathrm{WP}}$ pin and the $\overline{\mathrm{HOLD}}$ pin to V_{CC} directly is also possible when these pins are not in use.

2. Equivalent circuit of input pin and output pin

Figure 23 and 24 show the equivalent circuits of input pins in the S-25C080A. A pull-up and pull-down elements are not included in each input pin, pay attention not to set it in the floating state when you design.
Figure 25 shows the equivalent circuit of the output pin. This pin has the tri-state output of " H " level / " L " level/high impedance.

2. 1 Input pin

Figure $23 \overline{C S}$, SCK Pin

Figure 24 SI, $\overline{\mathbf{W P}}, \overline{\mathrm{HOLD}}$ Pin

2. 2 Output pin

Figure 25 SO Pin

3. Precautions for use

- Absolute maximum ratings: Do not operate these ICs in excess of the absolute maximum ratings (as listed on the data sheet). Exceeding the supply voltage rating can cause latch-up. Perform operations after confirming the detailed operation condition in the data sheet.
- Operations with moisture on the S-25C080A pins may occur malfunction by short-circuit between pins. Especially, in occasions like picking the S-25C080A up from low temperature tank during the evaluation. Be sure that not remain frost on the S-25C080A pin to prevent malfunction by short-circuit.
Also attention should be paid in using on environment, which is easy to dew for the same reason.

■ Precautions

- Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in electrostatic protection circuit.
- ABLIC Inc. claims no responsibility for any and all disputes arising out of or in connection with any infringement of the products including this IC upon patents owned by a third party.

■ Precautions for WLP package

- The side of device silicon substrate is exposed to the marking side of device package. Since this portion has lower strength against the mechanical stress than the standard plastic package, chip, crack, etc should be careful of the handing of a package enough. Moreover, the exposed side of silicon has electrical potential of device substrate, and needs to be kept out of contact with the external potential.
- In this package, the overcoat of the resin of translucence is carried out on the side of device area. Keep it mind that it may affect the characteristic of a device when exposed a device in the bottom of a high light source.

■ Product Name Structure

1. Product name

1. 1 8-Pin SOP (JEDEC), 8-Pin TSSOP

S-25C080A: 8 K-bit

1. 2 TMSOP-8, SNT-8A

S-25C080A: 8 K-bit

1. $3 \mathrm{WLP}-8 \mathrm{H}$

S-25C080A: 8 K-bit
2. Packages

No. FJ008-A-P-SD-2. 2

TITLE	SOP8J-D-PKG Dimensions
No.	FJ008-A-P-SD-2.2
ANGLE	子
UNIT	mm
ABLIC Inc.	

Feed direction

No. FJ008-D-C-SD-1. 1

TITLE	SOP8J-D-Carrier Tape
No.	FJ008-D-C-SD-1.1
ANGLE	
UNIT	mm
ABLIC Inc.	

No. FJ008-D-R-SD-1.1

No. FJ008-Z-P-SD-2. 1

TITLE	SOP8J-Z-PKG Dimensions
No.	FJ008-Z-P-SD-2.1
ANGLE	\square
UNIT	mm
ABLIC Inc.	

Feed direction

No. FJ008-Z-C-SD-1.0

TITLE	SOP8J-Z-Carrier Tape
No.	FJ008-Z-C-SD-1.0
ANGLE	
UNIT	mm
ABLIC Inc.	

No. FJ008-Z-R-SD-1.0

TITLE	SOP8J-Z-Reel		
No.	FJ008-Z-R-SD-1.0		
ANGLE		QTY.	4,000
UNIT	mm		
ABLIC Inc.			

No. FT008-A-P-SD-1.2

TITLE	TSSOP8-E-PKG Dimensions
No.	FT008-A-P-SD-1.2
ANGLE	
UNIT	
ABLIC Inc.	

TITLE	
No.	
ANGLE	
UNIT	
ABLIC Inc.	

No. FT008-E-R-SD-1.0

TITLE	TSSOP8-E-Reel		
	FT008-E-R-SD-1.0		
ANGLE		QTY.	3,000
UNIT	mm		
ABLIC Inc.			

No. FT008-Z-P-SD-1.2

TITLE	TSSOP8-Z-PKG Dimensions
No.	FT008-Z-P-SD-1.2
ANGLE	(
UNIT	mm
ABLIC Inc.	

No. FT008-Z-C-SD-1.0

TITLE	TSSOP8-Z-Carrier Tape
No.	FT008-Z-C-SD-1.0
ANGLE	
UNIT	mm
ABLIC Inc.	

No. FT008-Z-R-SD-1.0

TITLE	TSSOP8-Z-Reel		
	FT008-Z-R-SD-1.0		
ANGLE		QTY.	
4,000			
UNIT	mm		
	ABLIC Inc.		

No. FM008-A-P-SD-1.2

TITLE	TMSOP8-A-PKG Dimensions
No.	FM008-A-P-SD-1.2
ANGLE	mm
UNIT	
ABLIC Inc.	

TITLE		
No.		
ANGLE		
UNIT		
ABLIC Inc.		

Enlarged drawing in the central part

No. FM008-A-R-SD-1.0

TITLE	TMSOP8-A-Reel		
	FM008-A-R-SD-1.0		
ANGLE			
UNIT	mm	4,000	
	ABLIC Inc.		

No. PH008-A-P-SD-2.1

TITLE	SNT-8A-A-PKG Dimensions
No.	PH008-A-P-SD-2.1
ANGLE	
UNIT	mm
ABLIC Inc.	

Feed direction

No. PH008-A-C-SD-2.0

TITLE	SNT-8A-A-Carrier Tape
No.	PH008-A-C-SD-2.0
ANGLE	
UNIT	mm
ABLIC Inc.	

No. PH008-A-R-SD-1.0

TITLE	SNT-8A-A-Reel		
No.	PH008-A-R-SD-1.0		
ANGLE		QTY.	
UNIT	mm	5000	
ABLIC Inc.			

※1．ランドパターンの幅に注意してください（ 0.25 mm min．／ 0.30 mm typ．）。
※2．パッケージ中央にランドパターンを広げないでください（1．96 mm～ 2.06 mm ）。
注意 1．パッケージのモールド樹脂下にシルク印刷やハンダ印刷などしないでください。
2．パッケージ下の配線上のソルダーレジストなどの厚みをランドパターン表面から 0.03 mm以下にしてください。
3．マスク開ロサイズと開ロ位置はランドパターンと合わせてください。
4．詳細は＂SNTパッケージ活用の手引き＂を参照してください。
※1．Pay attention to the land pattern width（ 0.25 mm min．／ 0.30 mm typ．）．
※2．Do not widen the land pattern to the center of the package（ 1.96 mm to 2.06 mm ）．
Caution 1．Do not do silkscreen printing and solder printing under the mold resin of the package．
2．The thickness of the solder resist on the wire pattern under the package should be 0.03 mm or less from the land pattern surface．
3．Match the mask aperture size and aperture position with the land pattern．
4．Refer to＂SNT Package User＇s Guide＂for details．
※1．请注意焊盘模式的宽度（ 0.25 mm min．／ 0.30 mm typ．）。
※2．请勿向封装中间扩展焊盘模式（ $1.96 \mathrm{~mm} \sim 2.06 \mathrm{~mm}$ ）。
注意 1．请勿在树脂型封装的下面印刷丝网，焊锡。
2．在封装下，布线上的阻焊膜厚度（从焊盘模式表面起）请控制在 0.03 mm 以下。
3．钢网的开口尺寸和开口位置请与焊盘模式对齐。
4．详细内容请参阅＂SNT 封装的应用指南＂。

No．PH008－A－L－SD－4． 1

TITLE	SNT－8A－A －Land Recommendation
No．	PH008－A－L－SD－4．1
ANGLE	
UNIT	mm
ABLIC Inc．	

No. HH008-A-P-SD-3.0

TITLE	WLP-8H-A-PKG Dimensions $($ S-25C080A)
No.	HH008-A-P-SD-3.0
ANGLE	(
UNIT	mm

ABLIC Inc.

No. HH008-A-C-SD-1.1

TITLE	WLP-8H-A-Carrier Tape $($ S-25C080A)
No.	HH008-A-C-SD-1.1
ANGLE	
UNIT	mm
ABLIC Inc.	

No. HH008-A-R-SD-1.1

TITLE	WLP-8H-A-Reel $($ S-25C080A $)$		
No.	HH008-A-R-SD-1.1		
ANGLE		QTY.	

