
Surface Mount - 400V - 800V > MCR8SDG, MCR8SMG, MCR8SNG

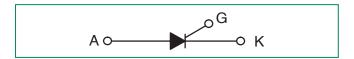
# MCR8SDG, MCR8SMG, MCR8SNG





#### **Pin Out**




### **Description**

Designed primarily for half-wave ac control applications, such as motor controls, heating controls, and power supplies; or wherever half-wave, silicon gate-controlled devices are needed.

#### **Features**

- Sensitive Gate Allows Triggering by Microcontrollers and other Logic Circuits
- Blocking Voltage to 800 V
- On-State Current Rating of 8 A RMS at 80°C
- High Surge Current Capability 80 A
- Rugged, Economical TO-220AB Package
- Glass Passivated Junctions for Reliability and Uniformity
- Minimum and Maximum Values of IGT, VGT and IH Specified for Ease of Design
- Immunity to dv/dt 5 V/sec Minimum at 110°C
- These are Pb-Free Devices

## **Functional Diagram**



#### Additional Information







© 2017 Littelfuse, Inc.
Specifications are subject to change without notice.
Revised: 08/30/17



## **Maximum Ratings** $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

| Rating                                                                                                                    | Symbol                                 | Value             | Unit               |
|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------|--------------------|
| Peak Repetitive Off-State Voltage (Note 1)  (- 40 to 110°C, Sine Wave, 50 to 60 Hz, Gate Open)  MCR8SDG  MCR8SMG  MCR8SNG | V <sub>DRM</sub> ,<br>V <sub>RRM</sub> | 400<br>600<br>800 | V                  |
| On-State RMS Current (180° Conduction Angles; $T_c = 80$ °C)                                                              | I <sub>T (RMS)</sub>                   | 8.0               | А                  |
| Peak Non-Repetitive Surge Current (1/2 Cycle, Sine Wave 60 Hz, $T_J = 110^{\circ}$ C)                                     | I <sub>TSM</sub>                       | 80                | А                  |
| Circuit Fusing Consideration (t = 8.33 ms)                                                                                | l²t                                    | 26.5              | A <sup>2</sup> sec |
| Forward Peak Gate Power (Pulse Width $\leq$ 10 $\mu$ sec, $T_c = 80^{\circ}$ C)                                           | P <sub>GM</sub>                        | 5.0               | W                  |
| Forward Average Gate Power (t = 8.3 msec, T <sub>c</sub> = 90°C)                                                          | P <sub>GM (AV)</sub>                   | 0.5               | W                  |
| Forward Peak Gate Current (Pulse Width ≤ 1.0 µsec, T <sub>c</sub> = 80°C)                                                 | I <sub>GM</sub>                        | 2.0               | А                  |
| Operating Junction Temperature Range                                                                                      | T <sub>J</sub>                         | -40 to 110        | °C                 |
| Storage Temperature Range                                                                                                 | T <sub>stg</sub>                       | -40 to 150        | °C                 |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

### **Thermal Characteristics**

| Rating                                                                        | Symbol           | Value | Unit |
|-------------------------------------------------------------------------------|------------------|-------|------|
| Thermal Resistance, Junction-to-Case                                          | R <sub>sJC</sub> | 2.2   | °C/W |
| Thermal Resistance, Junction-to-Ambient                                       | R <sub>sJA</sub> | 62.5  |      |
| Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 Seconds | T <sub>L</sub>   | 260   | °C   |

<sup>1.</sup> V<sub>DRM</sub> and V<sub>RRM</sub> for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

# **Thyristors**

## **Electrical Characteristics** - **OFF** (T<sub>1</sub> = 25°C unless otherwise noted)

| Characteristic                                                                 |                       | Symbol             | Min | Тур | Max | Unit |
|--------------------------------------------------------------------------------|-----------------------|--------------------|-----|-----|-----|------|
| Peak Repetitive Forward or Reverse Blocking Current                            | T <sub>J</sub> = 25°C | l <sub>DRM</sub> , | -   | -   | 10  |      |
| (Note 3) ( $V_{AK}$ = Rated $V_{DRM}$ or $V_{RRM}$ , $R_{GK}$ = 1.0 k $\Omega$ | $T_J = 110^{\circ}C$  | I <sub>RRM</sub>   | -   | -   | 500 | - μΑ |

## **Electrical Characteristics** - **ON** (T<sub>J</sub> = 25°C unless otherwise noted; Electricals apply in both directions)

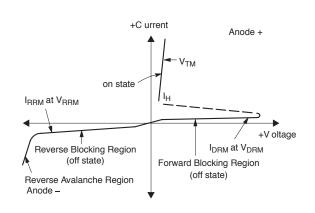
| Characteristic                                                                                                                                     |                        | Symbol          | Min | Тур  | Max | Unit |
|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------|-----|------|-----|------|
| Peak Forward On-State Voltage (Note 2) (I <sub>TM</sub> = 16 A)                                                                                    |                        | V <sub>TM</sub> | -   | -    | 1.8 | V    |
| Gate Trigger Current (Continuous dc) (Note 4) $(V_D = 12 \text{ V}; \text{ R}_L = 100 \Omega)$                                                     |                        | I <sub>GT</sub> | 5.0 | 25   | 200 | μА   |
| Holding Current (Note 3)<br>(V <sub>D</sub> = 12 V, Gate Open, Initiating Current = 200 mA)                                                        |                        | I <sub>H</sub>  | -   | 0.5  | 6.0 | mA   |
| Latch Current (Note 4) ( $V_D = 12 \text{ V}, I_G = 200 \mu\text{A}$ )                                                                             |                        | l <sub>GT</sub> | -   | 0.6  | 8.0 | mA   |
| Gate Trigger Voltage (Continuous dc) ( $V_D = 12 \text{ V}$ , $R_L = 100 \Omega$ ) $T_J = 25^{\circ}\text{C}$ (Note 4) $T_J = -40^{\circ}\text{C}$ |                        | \               | 0.3 | 0.65 | 1.0 | V    |
|                                                                                                                                                    |                        | V <sub>GT</sub> | -   | -    | 1.5 | V    |
| Gate Non-Trigger Voltage $(V_D = 12 \text{ V}, \text{ R}_L = 100 \Omega)$                                                                          | T <sub>J</sub> = 110°C | tgt             | -   | 2.0  | 5.0 | μs   |

### **Dynamic Characteristics**

| Characteristic                                                                                                                                |  | Min | Тур | Max | Unit |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--|-----|-----|-----|------|
| Critical Rate of Rise of Off–State Voltage ( $V_D = 0.67\%~V_{DRM},~R_{GK} = 1~K\Omega,~C_{GK} = 0.1~\mu\text{F},T_J = 110^{\circ}\text{C}$ ) |  | 5.0 | 15  | -   | V/µs |
| Critical Rate of Rise of On–State Current (IPK = 50 A, Pw = 40 µsec, diG/dt = 1 A/µsec, Igt = 10 mA                                           |  | -   | -   | 100 | A/µs |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

<sup>2.</sup> Ratings apply for negative gate voltage or RGK = 1.0 kQ. Devices shall not have a positive gate voltage concurrently with a negative voltage on the anode. Devices should not be tested with a constant current source for forward and reverse blocking capability such that the voltage applied exceeds the rated blocking voltage.


<sup>3.</sup> Pulse Test; Pulse Width  $\leq$  2.0 msec, Duty Cycle  $\leq$  2% .

<sup>4.</sup> RGK current not included in measurements.



### **Voltage Current Characteristic of SCR**

| Symbol           | Parameter                                 |  |
|------------------|-------------------------------------------|--|
| $V_{DRM}$        | Peak Repetitive Forward Off State Voltage |  |
| I <sub>DRM</sub> | Peak Forward Blocking Current             |  |
| V <sub>RRM</sub> | Peak Repetitive Reverse Off State Voltage |  |
| I <sub>RRM</sub> | Peak Reverse Blocking Current             |  |
| V <sub>TM</sub>  | Maximum On State Voltage                  |  |
| I <sub>H</sub>   | Holding Current                           |  |



**Figure 1. Typical RMS Current Derating** 

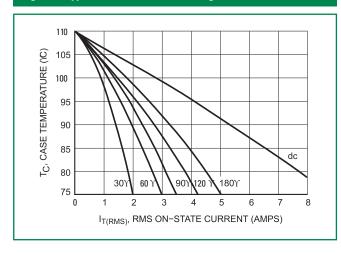



Figure 2. On-State Power Dissipation

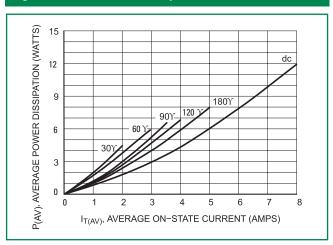



Figure 3. Typical On-State Characteristics

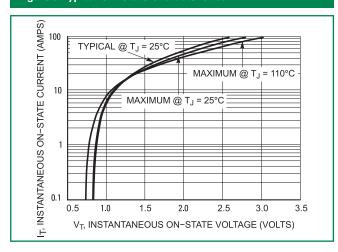
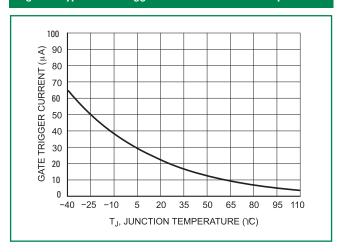
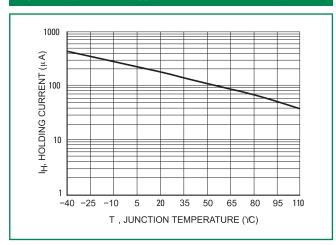




Figure 4. Typical Gate Trigger Current vs Junction Temperature



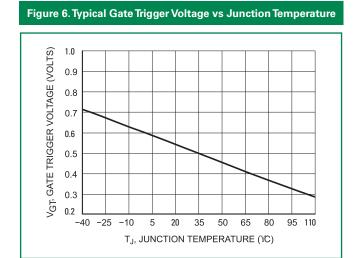
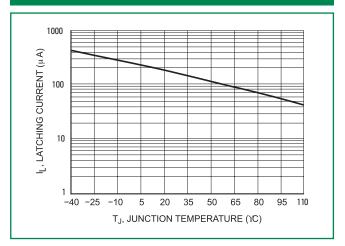


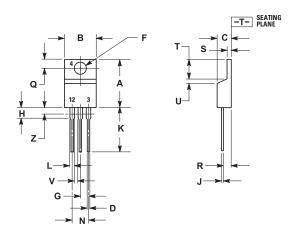

## Surface Mount - 400V - 800V > MCR8SDG, MCR8SMG, MCR8SNG

Figure 5. Typical Gate Trigger Current vs Junction Temperature

**Thyristors** 



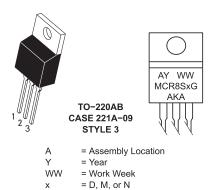





Figure 7. Typical Holding Current vs Junction Temperature





## Surface Mount - 400V - 800V > MCR8SDG, MCR8SMG, MCR8SNG


#### **Dimensions**



| <u>.</u> | Inches |       | Millim | neters |
|----------|--------|-------|--------|--------|
| Dim      | Min    | Max   | Min    | Max    |
| А        | 0.570  | 0.620 | 14.48  | 15.75  |
| В        | 0.380  | 0.405 | 9.66   | 10.28  |
| С        | 0.160  | 0.190 | 4.07   | 4.82   |
| D        | 0.025  | 0.035 | 0.64   | 0.88   |
| F        | 0.142  | 0.147 | 3.61   | 3.73   |
| G        | 0.095  | 0.105 | 2.42   | 2.66   |
| Н        | 0.110  | 0.155 | 2.80   | 3.93   |
| J        | 0.014  | 0.022 | 0.36   | 0.55   |
| K        | 0.500  | 0.562 | 12.70  | 14.27  |
| L        | 0.045  | 0.060 | 1.15   | 1.52   |
| N        | 0.190  | 0.210 | 4.83   | 5.33   |
| Q        | 0.100  | 0.120 | 2.54   | 3.04   |
| R        | 0.080  | 0.110 | 2.04   | 2.79   |
| S        | 0.045  | 0.055 | 1.15   | 1.39   |
| Т        | 0.235  | 0.255 | 5.97   | 6.47   |
| U        | 0.000  | 0.050 | 0.00   | 1.27   |
| V        | 0.045  |       | 1.15   |        |
| Z        |        | 0.080 |        | 2.04   |

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

## **Part Marking System**



= Pb-Free Package

= Diode Polarity

G AKA

| Pin Assignment |         |  |  |  |  |
|----------------|---------|--|--|--|--|
| 1              | Cathode |  |  |  |  |
| 2              | Anode   |  |  |  |  |
| 3              | Gate    |  |  |  |  |
| 4              | Anode   |  |  |  |  |

| Ordering Information  |                  |  |  |  |  |
|-----------------------|------------------|--|--|--|--|
| Package               | Shipping         |  |  |  |  |
|                       |                  |  |  |  |  |
| TO-220AB<br>(Pb-Free) | 50 Units / Rail  |  |  |  |  |
|                       |                  |  |  |  |  |
|                       | Package TO-220AB |  |  |  |  |

**Disclaimer Notice** - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littlefuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at: <a href="https://www.littlefuse.com/disclaimer-electronics">www.littlefuse.com/disclaimer-electronics</a>