$\pm 15 \mathrm{kV}$ ESD Protected, $1 / 8$ Unit Load, 5V, Low Power, High Speed and Slew Rate Limited, Full Duplex, RS-485/RS-422 Transceivers

The ISL4489E, ISL4491E are ESD protected, "fractional" unit load, BiCMOS, 5 V powered, single transceivers that meet both the RS-485 and RS-422 standards for balanced communication. Each driver output and receiver input is protected against $\pm 15 \mathrm{kV}$ ESD strikes, without latch-up. Unlike competitive versions, these Intersil devices are specified for 10% tolerance supplies (4.5 V to 5.5 V).

Rx inputs and Tx outputs present a " $1 / 8$ unit load" to the RS-485 bus, which allows a total of 256 transmitters and receivers on the network for large node count systems.

These devices are configured for full duplex (separate Rx input and Tx output pins) applications, so they are ideal for RS-422 networks requiring high ESD tolerance on the bus pins.

The ISL4489E utilizes a slew rate limited driver which reduces EMI, and minimizes reflections from improperly terminated transmission lines, or unterminated stubs in multidrop and multipoint applications.

Data rates up to 15 Mbps are achievable by using the ISL4491E, which features higher slew rates.

Receiver ($R x$) inputs feature a "fail-safe if open" design, which ensures a logic high $R x$ output if $R x$ inputs are floating.

Driver (Tx) outputs are short circuit protected, even for voltages exceeding the power supply voltage. Additionally, on-chip thermal shutdown circuitry disables the Tx outputs to prevent damage if power dissipation becomes excessive.

Features

- Pb-free Available as an Option (RoHS Compliant) (See Ordering Info)
- RS-485 I/O Pin ESD Protection $\pm 15 \mathrm{kV}$ HBM
- Class 3 ESD Level on all Other Pins >7kV HBM
- 1/8 Unit Load Allows up to 256 Devices on the Bus
- High Data Rates (ISL4491E) up to 15 Mbps
- Slew Rate Limited Version for Error Free Data Transmission (ISL4489E)
- Very Low Quiescent Current:
- 140رA (ISL4489E)
- $370 \mu \mathrm{~A}$ (ISL4491E)
- -7 V to +12 V Common Mode Input Voltage Range
- Three-State Rx and Tx Outputs
- Full Duplex Pinout
- Operates from a Single +5V Supply (10\% Tolerance)
- Current Limiting and Thermal Shutdown for driver Overload Protection

Applications

- Factory Automation
- Security Networks
- Building Environmental Control Systems
- Industrial/Process Control Networks
- Level Translators (e.g., RS-232 to RS-422)
- RS-232 "Extension Cords"

TABLE 1. SUMMARY OF FEATURES

PART NUMBER	HALF/FULL DUPLEX	HIGH ESD?	NO. OF DEVICES ALLOWED ON BUS	DATA RATE (Mbps)	SLEW-RATE LIMITED?	RECEIVER/ DRIVER ENABLE?	QUIESCENT ICC (μA)	PIN COUNT
ISL4489E	Full	Yes	256	0.25	Yes	Yes	140	14
ISL4491E	Full	Yes	256	15	No	Yes	370	14

Ordering Information

PART NUMBER	PART MARKING	TEMP. RANGE $\left({ }^{\circ}\right.$ C $)$	PACKAGE	PKG. DWG. \#
ISL4489EIB	ISL4489EIB	-40 to 85	14 Ld SOIC	M14.15
ISL4489EIBZ (Note)	$4489 E$ EIBZ	-40 to 85	14 Ld SOIC (Pb-free)	M14.15
ISL4491EIB	ISL4491EIB	-40 to 85	14 Ld SOIC	M14.15
ISL4491EIBZ (Note)	$4491 E I B Z ~$	-40 to 85	14 Ld SOIC (Pb-free)	M14.15

Add "-T" suffix for tape and reel.
NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100\% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb -free soldering operations. Intersil Pb -free products are MSL classified at Pb -free peak reflow temperatures that meet or exceed the Pb -free requirements of IPC/JEDEC J STD-020.

Truth Tables

TRANSMITTING				
INPUTS			OUTPUTS	
$\overline{R E}$	DE	DI	Z	Y
X	1	1	0	1
X	1	0	1	0
X	0	X	High- Z	High- Z

Pinout

ISL4489E, ISL4491E (SOIC)

 TOP VIEW

RECEIVING			
INPUTS			
$\overline{\mathrm{RE}}$	DE	A-B	RO
0	X	$\geq+0.2 \mathrm{~V}$	1
0	X	$\leq-0.2 \mathrm{~V}$	0
0	X	Inputs Open	1
1	X	X	High- Z

Pin Descriptions

PIN	FUNCTION
RO	Receiver output: If $A>B$ by at least 0.2 V , RO is high; If $\mathrm{A}<\mathrm{B}$ by 0.2 V or more, $R \mathrm{O}$ is low; $R O=H$ igh if A and B are unconnected (floating).
$\overline{\mathrm{RE}}$	Receiver output enable. $R O$ is enabled when $\overline{\mathrm{RE}}$ is low; $R O$ is high impedance when $\overline{\mathrm{RE}}$ is high.
DE	Driver output enable. The driver outputs, Y and Z , are enabled by bringing DE high. They are high impedance when DE is low.
DI	Driver input. A low on DI forces output Y low and output Z high. Similarly, a high on DI forces output Y high and output Z low.
GND	Ground connection.
A	$\pm 15 \mathrm{kV}$ HBM ESD Protected, Noninverting receiver input.
B	$\pm 15 \mathrm{kV}$ HBM ESD Protected, Inverting receiver input.
Y	$\pm 15 \mathrm{kV}$ HBM ESD Protected, Noninverting driver output.
Z	$\pm 15 \mathrm{kV}$ HBM ESD Protected, Inverting driver output.
V_{CC}	System power supply input (4.5V to 5.5 V).
NC	No Connection.

Typical Operating Circuit

ISL4489E, ISL4491E

Absolute Maximum Ratings	
$V_{C C}$ to Ground. \qquad	
DI, DE, RE	-0.5 V to ($\left.\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}\right)$
Input/Output Voltages	
A, B, Y, Z	-8 V to +12.5 V
RO	-0.5 V to ($\left.\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}\right)$
Short Circuit Duration	
Y, Z.	Continuous
ESD Rating	See Specification Table

Thermal Information

Operating Conditions

Temperature Range.
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. θ_{JA} is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details.

Electrical Specifications Test Conditions: $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V ; Unless Otherwise Specified. Typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Note 2

PARAMETER	SYMBOL	TEST CONDITIONS		TEMP $\left({ }^{\circ} \mathrm{C}\right)$	MIN	TYP	MAX	UNITS
DC CHARACTERISTICS								
Driver Differential $\mathrm{V}_{\text {OUT }}$ (no load)	$\mathrm{V}_{\text {OD1 }}$			Full	-	-	V_{CC}	V
Driver Differential $\mathrm{V}_{\text {OUT }}$ (with load)	$\mathrm{V}_{\text {OD2 }}$	$\mathrm{R}=50 \Omega$ (RS-422) (Figure 1)		Full	2	3	-	V
		$\mathrm{R}=27 \Omega$ (RS-485) (Figure 1)		Full	1.5	2.3	5	V
Change in Magnitude of Driver Differential $\mathrm{V}_{\text {OUT }}$ for Complementary Output States	$\Delta \mathrm{V}_{\mathrm{OD}}$	$\mathrm{R}=27 \Omega$ or 50Ω (Figure 1)		Full	-	0.01	0.2	V
Driver Common-Mode $\mathrm{V}_{\text {OUT }}$	V_{OC}	$\mathrm{R}=27 \Omega$ or 50Ω (Figure 1)		Full	-	-	3	V
Change in Magnitude of Driver Common-Mode $\mathrm{V}_{\text {OUT }}$ for Complementary Output States	$\Delta \mathrm{V}_{\mathrm{OC}}$	$\mathrm{R}=27 \Omega$ or 50Ω (Figure 1)		Full	-	0.01	0.2	V
Logic Input High Voltage	V_{IH}	DE, DI, $\overline{\mathrm{RE}}$		Full	2	-	-	V
Logic Input Low Voltage	$\mathrm{V}_{\text {IL }}$	DE, DI, $\overline{R E}$		Full	0.8	-	-	V
Logic Input Current	$\mathrm{I}_{\text {IN1 }}$	DI		Full	-2	-	2	$\mu \mathrm{A}$
		DE, $\overline{\mathrm{RE}}$		Full	-40	-	40	$\mu \mathrm{A}$
Input Current (A, B) (Note 5)	IIN2	$\begin{aligned} & \mathrm{DE}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \text { or } \\ & 4.5 \text { to } 5.5 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$	Full	-	-	130	$\mu \mathrm{A}$
			$V_{\text {IN }}=-7 \mathrm{~V}$	Full	-100	-	-	$\mu \mathrm{A}$
Driver Three-State (high impedance) Output Current (Y, Z)	IOZD	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 12 \mathrm{~V}$		Full	-100	-	100	$\mu \mathrm{A}$
Receiver Differential Threshold Voltage	$\mathrm{V}_{\text {TH }}$	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12 \mathrm{~V}$		Full	-0.2	-	0.2	V
Receiver Input Hysteresis	$\Delta \mathrm{V}_{\mathrm{TH}}$	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$		25	-	70	-	mV
Receiver Output High Voltage	V_{OH}	$\mathrm{I}_{\mathrm{O}}=-4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{ID}}=200 \mathrm{mV}$		Full	3.5	-	-	V
Receiver Output Low Voltage	V_{OL}	$\mathrm{I}_{\mathrm{O}}=-4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{ID}}=200 \mathrm{mV}$		Full	-	-	0.4	V
Three-State (high impedance) Receiver Output Current	IOZR	$0.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 2.4 \mathrm{~V}$		Full	-	-	± 1	$\mu \mathrm{A}$
Receiver Input Resistance	R_{IN}	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12 \mathrm{~V}$		Full	92	120	-	$\mathrm{k} \Omega$
No-Load Supply Current (Note 3)	${ }^{\text {CC }}$	$\text { ISL4489E, DE, DI, } \overline{\mathrm{RE}}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}$		Full	-	140	190	$\mu \mathrm{A}$
		ISL4491E, DE, DI, $\overline{\mathrm{RE}}=0 \mathrm{~V}$ or V_{CC}		Full	-	370	460	$\mu \mathrm{A}$
Driver Short-Circuit Current, $V_{O}=$ High or Low	IOSD1	$D E=V_{C C},-7 V \leq V_{Y} \text { or } V_{Z} \leq 12 V(\text { Note } 4)$		Full	35	-	250	mA
Receiver Short-Circuit Current	IOSR	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$		Full	7	-	85	mA

Electrical Specifications Test Conditions: $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V ; Unless Otherwise Specified. Typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Note 2 (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS	TEMP (${ }^{\circ} \mathrm{C}$)	MIN	TYP	MAX	UNITS		
SWITCHING CHARACTERISTICS (ISL4489E)									
Driver Input to Output Delay	$\mathrm{t}_{\text {PLH, }}$ tPHL	$\mathrm{R}_{\text {DIFF }}=54 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Figure 2)	Full	250	400	2000	ns		
Driver Output Skew	tskEW	$\mathrm{R}_{\text {DIFF }}=54 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Figure 2)	Full	-	160	800	ns		
Driver Differential Rise or Fall Time	t_{R}, t_{F}	$\mathrm{R}_{\text {DIFF }}=54 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Figure 2)	Full	250	600	2000	ns		
Driver Enable to Output High	t_{ZH}	$C_{L}=100 \mathrm{pF}, \mathrm{SW}=\mathrm{GND}$ (Figure 3)	Full	250	1000	2000	ns		
Driver Enable to Output Low	t_{ZL}	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{SW}=\mathrm{V}_{\mathrm{CC}}$ (Figure 3)	Full	250	860	2000	ns		
Driver Disable from Output High	t_{Hz}	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{GND}$ (Figure 3)	Full	300	660	3000	ns		
Driver Disable from Output Low	tLZ	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{V}_{\mathrm{CC}}$ (Figure 3)	Full	300	640	3000	ns		
Receiver Input to Output Delay	$t_{\text {PLH, }}$, tPHL	Figure 4	Full	250	500	2000	ns		
Receiver Skew \\| tpLH - tphl I	tskD	Figure 4	25	-	60	-	ns		
Receiver Enable to Output High	t_{ZH}	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{GND}$ (Figure 5)	Full	-	10	50	ns		
Receiver Enable to Output Low	t_{ZL}	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{V}_{\mathrm{CC}}$ (Figure 5)	Full	-	10	50	ns		
Receiver Disable from Output High	t_{Hz}	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{GND}$ (Figure 5)	Full	-	10	50	ns		
Receiver Disable from Output Low	tLZ	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{V}_{\mathrm{CC}}$ (Figure 5)	Full	-	10	50	ns		
Maximum Data Rate	$\mathrm{f}_{\text {MAX }}$		Full	250	-	-	kbps		
SWITCHING CHARACTERISTICS (ISL4491E)									
Driver Input to Output Delay	tPLH, $^{\text {tPHL }}$	$\mathrm{R}_{\text {DIFF }}=54 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Figure 2)	Full	13	24	40	ns		
Driver Output Skew	${ }^{\text {t SKEW }}$	$\mathrm{R}_{\text {DIFF }}=54 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Figure 2)	Full	-	3	10	ns		
Driver Differential Rise or Fall Time	$t_{\text {R }}, t_{\text {F }}$	$\mathrm{R}_{\text {DIFF }}=54 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Figure 2)	Full	5	12	20	ns		
Driver Enable to Output High	t_{ZH}	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{SW}=\mathrm{GND}$ (Figure 3)	Full	-	14	70	ns		
Driver Enable to Output Low	t_{ZL}	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{SW}=\mathrm{V}_{\mathrm{CC}}$ (Figure 3)	Full	-	14	70	ns		
Driver Disable from Output High	t_{Hz}	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{GND}$ (Figure 3)	Full	-	44	70	ns		
Driver Disable from Output Low	tLZ	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{V}_{\mathrm{CC}}$ (Figure 3)	Full	-	21	70	ns		
Receiver Input to Output Delay	$t_{\text {PLH }}$, $\mathrm{t}_{\text {PHL }}$	(Figure 4)	Full	30	90	150	ns		
Receiver Skew \\| tpL - tphl		tSKD	(Figure 4)	25	-	5	-	ns	
Receiver Enable to Output High	t_{ZH}	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{GND}$ (Figure 5)	Full	-	9	50	ns		
Receiver Enable to Output Low	t_{ZL}	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{V}_{\mathrm{CC}}$ (Figure 5)	Full	-	9	50	ns		
Receiver Disable from Output High	t_{HZ}	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{GND}$ (Figure 5)	Full	-	9	50	ns		
Receiver Disable from Output Low	tLZ	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{V}_{\mathrm{CC}}$ (Figure 5)	Full	-	9	50	ns		
Maximum Data Rate	$\mathrm{f}_{\text {MAX }}$		Full	15	-	-	Mbps		
ESD PERFORMANCE									
RS-485 Pins (A, B, Y, Z)		Human Body Model	25	-	± 15	-	kV		
All Other Pins			25	-	$> \pm 7$	-	kV		

NOTES:

2. All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise specified.
3. Supply current specification is valid for loaded drivers when $D E=0 \mathrm{~V}$.
4. Applies to peak current. See "Typical Performance Curves" for more information.
5. Devices meeting these limits are denoted as " $1 / 8$ unit load ($1 / 8 \mathrm{UL}$)" transceivers. The RS-485 standard allows up to 32 Unit Loads on the bus, so there can be 256 1/8 UL devices on a bus.

Test Circuits and Waveforms

FIGURE 1. DRIVER $V_{O D}$ AND $V_{O C}$

gune 2A. TEST CIRCUIT
FIGURE 2. DRIVER PROPAGATION DELAY AND DIFFERENTIAL TRANSITION TIMES

Test Circuits and Waveforms (Continued)

FIGURE 3A. TEST CIRCUIT

FIGURE 3B. MEASUREMENT POINTS

FIGURE 3. DRIVER ENABLE AND DISABLE TIMES

FIGURE 4A. TEST CIRCUIT

A

FIGURE 4B. MEASUREMENT POINTS

FIGURE 4. RECEIVER PROPAGATION DELAY

FIGURE 5A. TEST CIRCUIT

FIGURE 5B. MEASUREMENT POINTS

FIGURE 5. RECEIVER ENABLE AND DISABLE TIMES

Application Information

RS-485 and RS-422 are differential (balanced) data transmission standards for use in long haul or noisy environments. RS-422 is a subset of RS-485, so RS-485 transceivers are also RS-422 compliant. RS-422 is a point-to-multipoint (multidrop) standard, which allows only one driver and up to 10 (assuming one unit load devices) receivers on each bus. RS-485 is a true multipoint standard, which allows up to 32 one unit load devices (any combination of drivers and receivers) on each bus. To allow for multipoint operation, the RS-485 spec requires that drivers must handle bus contention without sustaining any damage.

Another important advantage of RS-485 is the extended common mode range (CMR), which specifies that the driver outputs and receiver inputs withstand signals that range from +12 V to -7 V . RS-422 and RS-485 are intended for runs as long as 4000', so the wide CMR is necessary to handle ground potential differences, as well as voltages induced in the cable by external fields.

Receiver Features

These devices utilize a differential input receiver for maximum noise immunity and common mode rejection. Input sensitivity is $\pm 200 \mathrm{mV}$, as required by the RS-422 and RS-485 specifications.

Receiver input resistance of $120 \mathrm{k} \Omega$ surpasses the RS-422 spec of $4 \mathrm{k} \Omega$, and is more than eight times the RS-485 "Unit Load" requirement of $12 \mathrm{k} \Omega$. Thus, these products are known as "one-eighth UL" transceivers, and there can be up to 256 of these devices on a network while still complying with the RS-485 loading spec.

Receiver inputs function with common mode voltages as great as $\pm 7 \mathrm{~V}$ outside the power supplies (i.e., +12 V and -7 V), making them ideal for long networks where induced voltages are a realistic concern.

All the receivers include a "fail-safe if open" function that guarantees a high level receiver output if the receiver inputs are unconnected (floating).

Receivers easily meet the data rate supported by the corresponding driver, and receiver outputs are three-statable via the active low $\overline{R E}$ input.

Driver Features

The RS-485/422 driver is a differential output device that delivers at least 1.5 V across a 54Ω load (RS-485), and at least 2 V across a 100Ω load (RS-422). The drivers feature low propagation delay skew to maximize bit width, and to minimize EMI, and driver outputs are three-statable via the active high DE input.

The ISL4489E driver outputs are slew rate limited to further reduce EMI, and to minimize reflections in unterminated or improperly terminated networks. Data rates on these slew
rate limited versions are a maximum of 250 kbps . Outputs of ISL4491E drivers are not limited, so faster output transition times allow data rates of at least 15Mbps.

Data Rate, Cables, and Terminations

Twisted pair is the cable of choice for RS-485/422 networks. Twisted pair cables tend to pick up noise and other electromagnetically induced voltages as common mode signals, which are effectively rejected by the differential receivers in these ICs.

RS-485/422 are intended for network lengths up to 4000', but the maximum system data rate decreases as the transmission length increases. Devices operating at 15Mbps are limited to lengths of a few hundred feet, while the 250kbps versions can operate at full data rates with lengths in excess of 1000'.

Proper termination is imperative, when using the 15 Mbps devices, to minimize reflections. Short networks using the 250 kbps versions need not be terminated, but, terminations are recommended unless power dissipation is an overriding concern. In point-to-point, or point-to-multipoint (single driver on bus) networks, the main cable should be terminated in its characteristic impedance (typically 120Ω) at the end farthest from the driver. In multi-receiver applications, stubs connecting receivers to the main cable should be kept as short as possible. Multipoint (multi-driver) systems require that the main cable be terminated in its characteristic impedance at both ends. Stubs connecting a transceiver to the main cable should be kept as short as possible.

Built-In Driver Overload Protection

As stated previously, the RS-485 spec requires that drivers survive worst case bus contentions undamaged. The ISL44XXE devices meet this requirement via driver output short circuit current limits, and on-chip thermal shutdown circuitry.
The driver output stages incorporate short circuit current limiting circuitry which ensures that the output current never exceeds the RS-485 spec, even at the common mode voltage range extremes. Additionally, these devices utilize a foldback circuit which reduces the short circuit current, and thus the power dissipation, whenever the contending voltage exceeds either supply.

In the event of a major short circuit condition, ISL44XXE devices also include a thermal shutdown feature that disables the drivers whenever the die temperature becomes excessive. This eliminates the power dissipation, allowing the die to cool. The drivers automatically reenable after the die temperature drops about 15 degrees. If the contention persists, the thermal shutdown/reenable cycle repeats until the fault is cleared. Receivers stay operational during thermal shutdown.

ESD Protection

All pins on these devices include class 3 Human Body Model (HBM) ESD protection structures, but the RS-485 pins (driver outputs and receiver inputs) incorporate advanced structures allowing them to survive ESD events in excess of $\pm 15 \mathrm{kV}$ HBM. The RS- 485 pins are particularly vulnerable to ESD damage because they typically connect to an exposed port on the exterior of the finished product. Simply touching the port pins, or connecting a cable, can
cause an ESD event that might destroy unprotected ICs. These new ESD structures protect the device whether or not it is powered up, protect without allowing any latchup mechanism to activate, and without degrading the RS-485 common mode range of -7 V to +12 V . This built-in ESD protection eliminates the need for board level protection structures (e.g., transient suppression diodes), and the associated, undesirable capacitive load they present.

Typical Performance Curves $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; Unless Otherwise Specified

FIGURE 6. DRIVER OUTPUT CURRENT vs DIFFERENTIAL OUTPUT VOLTAGE

FIGURE 8. DRIVER OUTPUT CURRENT vs SHORT CIRCUIT VOLTAGE

FIGURE 7. DRIVER DIFFERENTIAL OUTPUT VOLTAGE vs TEMPERATURE

FIGURE 9. SUPPLY CURRENT vs TEMPERATURE

Typical Performance Curves $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; Unless Otherwise Specified (Continued)

FIGURE 10. DRIVER PROPAGATION DELAY vs TEMPERATURE (ISL4489E)

FIGURE 12. DRIVER PROPAGATION DELAY vs TEMPERATURE (ISL4491E)

FIGURE 14. DRIVER AND RECEIVER WAVEFORMS, LOW TO HIGH (ISL4489E)

FIGURE 11. DRIVER SKEW vs TEMPERATURE (ISL4489E)

FIGURE 13. DRIVER SKEW vs TEMPERATURE (ISL4491E)

FIGURE 15. DRIVER AND RECEIVER WAVEFORMS, HIGH TO LOW (ISL4489E)

Typical Performance Curves $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; Unless Otherwise Specified (Continued)

FIGURE 16. DRIVER AND RECEIVER WAVEFORMS, LOW TO HIGH (ISL4491E)

Die Characteristics

SUBSTRATE POTENTIAL (POWERED UP):
GND
TRANSISTOR COUNT:
518
PROCESS:
Si Gate BiCMOS

Small Outline Plastic Packages (SOIC)

NOTES:

1. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.

M14.15 (JEDEC MS-012-AB ISSUE C) 14 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		
	MIN	MAX	MIN	MAX	
A	0.0532	0.0688	1.35	1.75	-
A1	0.0040	0.0098	0.10	0.25	-
B	0.013	0.020	0.33	0.51	9
C	0.0075	0.0098	0.19	0.25	-
D	0.3367	0.3444	8.55	8.75	3
E	0.1497	0.1574	3.80	4.00	4
e	0.050		BSC	1.27	BSC
H	0.2284	0.2440	5.80	6.20	-
h	0.0099	0.0196	0.25	0.50	5
L	0.016	0.050	0.40	1.27	6
N	14		14		7
α	0^{0}		8^{0}	0^{0}	8^{0}

Rev. 0 12/93
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15 mm (0.006 inch) per side.
4. Dimension " E " does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25 mm (0.010 inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
6. " L " is the length of terminal for soldering to a substrate.
7. " N " is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. The lead width " B ", as measured 0.36 mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61 mm (0.024 inch$)$.
10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.
© Copyright Intersil Americas LLC 2004-2006. All Rights Reserved.
All trademarks and registered trademarks are the property of their respective owners.

For additional products, see www.intersil.com/en/products.html

Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

