

HMC380QS16G / 380QS16GE

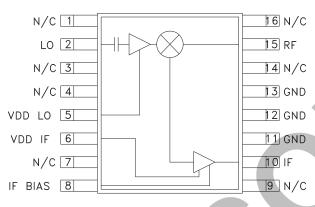
v02.0305

PCS/UMTS HIGH IP3 RFIC DOWNCONVERTER, 1.7 - 2.2 GHz

Typical Applications

The HMC380QS16G / HMC380QS16GE is ideal for:

- GSM, GPRS & EDGE Infrastructure
- CDMA, WCDMA Infrastructure
- PHS Infrastructure


Features

+19 dBm Input IP3
Low LO Drive: -5 dBm
Conversion Gain: 11 dB

Noise Figure: 9 dB

Single Positive Supply: +5V, 165 mA

Functional Diagram

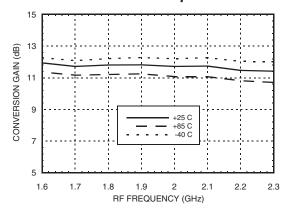
General Description

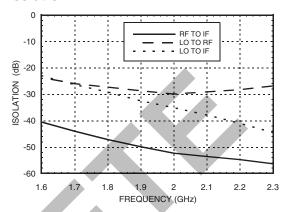
The HMC380QS16G & HMC380QS16GE are high linearity down-converter receiver ICs suitable for PCS/UMTS infrastructure applications from 1.7 - 2.2 GHz. The receiver IC is designed to support UMTS applications where a high third order intercept point is required. A passive mixer coupled with a high dynamic range IF amplifier achieves an input IP3 of +19 dBm. The converter provides a gain of 11.5 dB and 9 dB typical single side band noise figure. The IC operates from a positive +5V rail consuming 165 mA of current while only requiring a -5 dBm LO drive. The design requires no external baluns. The mixer supports IF frequencies between 50 MHz and 300 MHz.

Electrical Specifications, $T_A = +25^{\circ}$ C, LO = -5 dBm, Vdd = 5V, IF = 250 MHz [1]

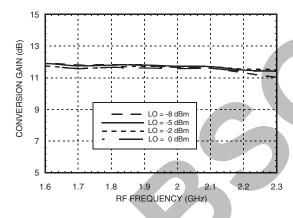
Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range, RF		1.7 - 2.0			2.0 - 2.2		GHz
Frequency Range, LO		1.4 - 1.95			1.7 - 2.15		GHz
Frequency Range, IF [2]		50 - 300		50 - 300		MHz	
Conversion Gain	9	11.5		9	11.5		dB
Noise Figure (SSB)		9.2	10.5		10	11.5	dB
LO to RF Isolation	20	25		23	28		dB
LO to IF Isolation	22	32		30	38		dB
RF to IF Isolation	38	50		46	54		dB
IP3 (Input)	17	19		17	19		dBm
1 dB Compression (Input)		5		3	6		dBm
LO Input Drive Level (Typical)		-5 to 0			-5 to 0		dBm
Supply Current (Idd for LO & IF) (IF bias resistor= 3.3 Ohms)		175			175		mA

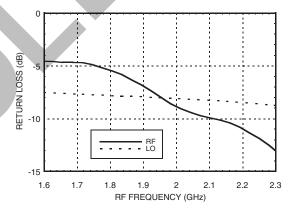
^[1] Unless otherwise noted all measurements with low side LO & IF = 250 MHz.


^[2] If matching must be tuned for optimal results, see application circuit herein.

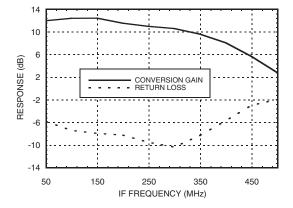


PCS/UMTS HIGH IP3 RFIC DOWNCONVERTER, 1.7 - 2.2 GHz


Conversion Gain vs. Temperature


Isolation

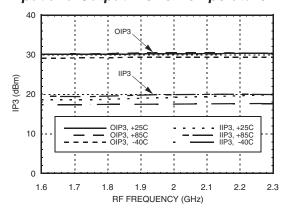
Conversion Gain vs. LO Drive

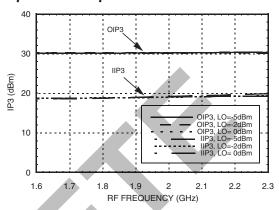

Return Loss

Input P1dB vs. Temperature

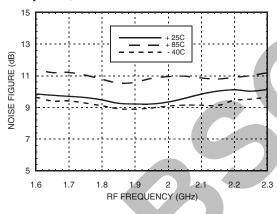
IF Bandwidth

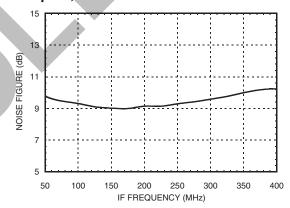
^{*} Unless otherwise noted all measurements with low side LO & IF = 250 MHz.

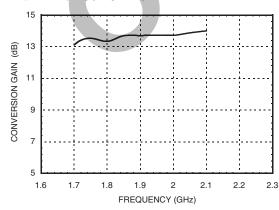

^{**} If matching must be tuned for optimal results, see application circuit herein.

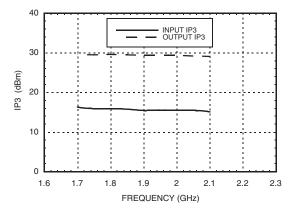


PCS/UMTS HIGH IP3 RFIC DOWNCONVERTER, 1.7 - 2.2 GHz


Input and Output IP3 vs. Temperature


Input and Output IP3 vs LO Drive


Noise Figure vs Temperature Swept LO, Fixed IF = 250 MHz


Noise Figure Swept IF, Fixed LO = 1.7 GHz

Conversion Gain with IF Tuned for 70 MHz

IP3 with IF Tuned for 70 MHz

^{*} Unless otherwise noted all measurements with low side LO & IF = 250 MHz.

^{**} If matching must be tuned for optimal results, see application circuit herein.

HMC380QS16G / 380QS16GE

v02.0305

PCS/UMTS HIGH IP3 RFIC DOWNCONVERTER, 1.7 - 2.2 GHz

MxN Spurious @ IF Port

	nLO				
mRF	0	1	2	3	4
0	xx	40	60	58	35
1	62	0	62	87	102
2	124	101	55	94	110
3	126	126	113	76	112
4	121	127	128	124	116

RF Freq. = 1.9 GHz @ -10 dBm LO Freq. = 1.65 GHz @ -5 dBm

All values in dBc relative to the IF power level.

Harmonics of LO

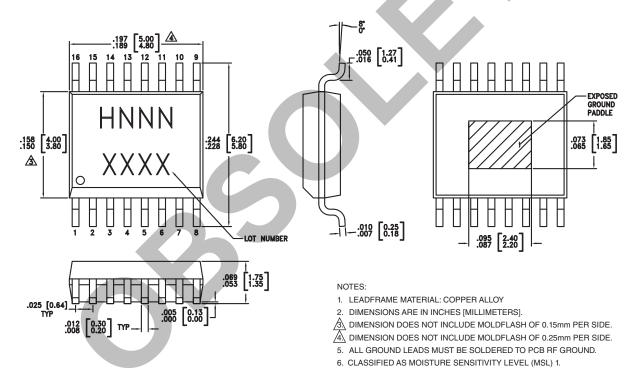
	nLO Spur @ RF Port			
LO Freq. (GHz)	1	2	3	4
1.4	23	3	16	15
1.6	26	6	12	18
1.8	26	8	10	29
2.0	24	8	12	31
2.2	38	10	14	35
2.4	23	12	19	40

LO = -5 dBm

All values in dBc below input LO level measured at RF port.

PCS/UMTS HIGH IP3 RFIC DOWNCONVERTER, 1.7 - 2.2 GHz

Absolute Maximum Ratings


RF / IF Input (Vdd= +5V)	+13 dBm
LO Drive (Vdd= +5V)	+15 dBm
Vdd (LO or IF)	+7 Vdc
Channel Temperature	150°C
Continuous Pdiss (T = 85°C) (derate 17 mW/°C above 85°C)	1.10 W
Thermal Resistance (channel to ground paddle)	59 °C/W
Storage Temperature	-65 to +150°C
Operating Temperature	-40 to +85°C

Typical Supply Current vs. Vdd

	Vdd (LO + IF)	ldd (mA)			
	+4.5	162			
	+5.0	165			
+5.5 168					
	Downconverter will operate over full voltage range shown above.				

Outline Drawing

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC380QS16G	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H380 XXXX
HMC380QS16GE	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	H380 XXXX

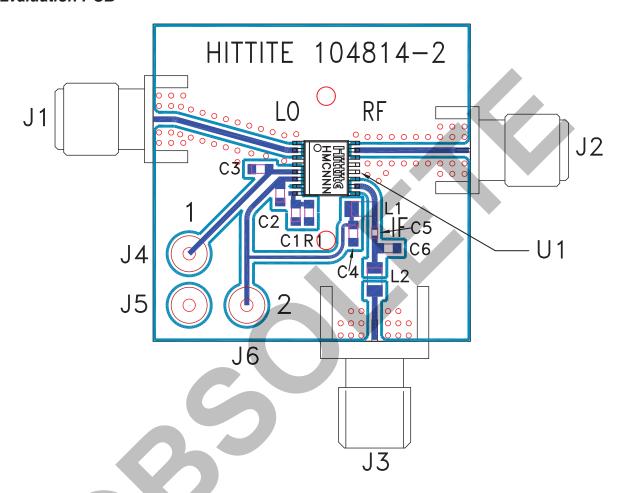
- [1] Max peak reflow temperature of 235 $^{\circ}\text{C}$
- [2] Max peak reflow temperature of 260 $^{\circ}\text{C}$
- [3] 4-Digit lot number XXXX

HMC380QS16G / 380QS16GE

v02.0305

PCS/UMTS HIGH IP3 RFIC DOWNCONVERTER, 1.7 - 2.2 GHz

Pin Descriptions


Pin Number	Function	Description	Interface Schematic
1, 3, 4, 7, 9, 14, 16	N/C	Not Connected	
2	LO	This pin is AC coupled and matched to 50 Ohm from 1.4 - 2.2 GHz.	Vdd IBias
11, 12, 13	GND	Backside of package has exposed metal ground slug that must also be connected to RF/DC ground.	GND
5	Vdd LO	Power supply for the LO amplifier. One external RF bypass capacitor (10,000 pF) is required.	Vdd LOO
6	Vdd IF	Bias voltage for IF amplifier. One external RF bypass capacitor (10,000 pF) is required.	Vdd IFO
8	IF Bias	DC bias setting for IF amplifier.	Vdd OIF Bias
10	IF	Output of IF and bias port for amplifier. A pull up inductor (L1), output matching network (C5, C6, L2), and 10,000 pF bypass capacitor (C4) are required.	O IF IF Bias
15	RF	This pin is DC coupled and matched to 50 Ohm from 1.7 - 2.2 GHz.	RF O

PCS/UMTS HIGH IP3 RFIC DOWNCONVERTER, 1.7 - 2.2 GHz

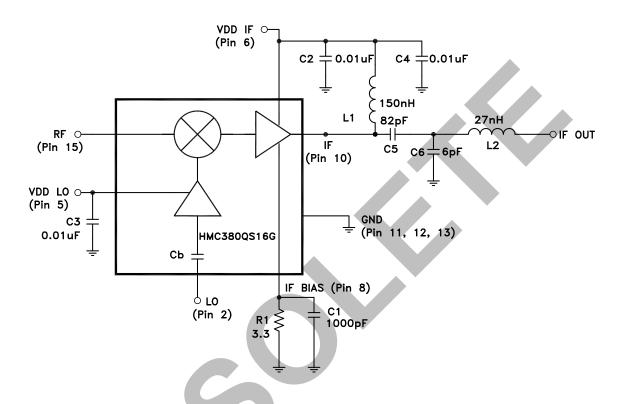
Evaluation PCB

List of Materials for Evaluation PCB 106397 [1]

Item	Description		
J1 - J3	PC Mount SMA RF Connector		
J4 - J6	DC Pins		
C1	1000 pF Chip Capacitor, 0603 Pkg.		
C2, C3, C4	0.01μF Chip Capacitor, 0603 Pkg.		
C5	82 pF Chip Capacitor, 0402 Pkg.		
C6	6 pF Chip Capacitor, 0603 Pkg.		
L1	150 nH Chip Inductor, 0805 Pkg.		
L2	27 nH Chip Inductor, 0805 Pkg.		
R1	3.3 Ohm Resistor, 0603 Pkg.		
U1	HMC380QS16G / HMC380QS16GE		
PCB [2]	104814 Evaluation Board, 1.100" x 1.100"		

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350


The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

PCS/UMTS HIGH IP3 RFIC DOWNCONVERTER, 1.7 - 2.2 GHz

Application Circuit

Note: Pin 5 and Pin 6 may be connected to a common Vdd Supply.

Selection of L2 & C6 For Various Tuned IF Frequencies*

IF		L2	C6
250 MH	z	27 nH	6 pF
70 MHz		39 nH	39 pF

^{*} Contact Hittite to optimize tuning topology for desired IF frequency.

^{*} Unless otherwise noted all measurements with low side LO & IF = 250 MHz.

^{**} If matching must be tuned for optimal results, see application circuit herein.