Effective September 2017 Supersedes April 2014

FP1108R High frequency, high current power inductors

Product features

- 11.0 mm x 8.0 mm x 7.5 mm surface mount package
- Ferrite core material
- Tight tolerance DCR for sensing circuits
- Inductance range from 100 nH to 210 nH
- Current range from 55 A to 100+ A

Applications

- Multi-phase regulators
- Voltage Regulator Modules (VRMs)
- Desktop and server VRMs and EVRDs
- Notebook and laptop regulators
- Data networking and storage systems
- · Graphics cards and battery power systems
- Point-of-Load modules
- DCR Sensing circuits

Environmental data

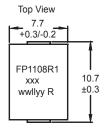
- Storage temperature range (component): -40 °C to +125 °C
- Operating temperature range: -40 °C to +125 °C (ambient plus self-temperature rise)
- Solder reflow temperature: J-STD-020 (latest revision) compliant

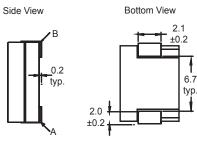
Product specifications

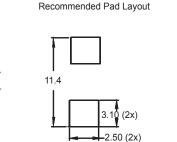
Part Number ⁹	OCL ¹ (nH) ±10%	FLL min.² (nH)	I _{rms} ³ (A)	I _{sat} 1⁴ (A)	I _{sat} 2⁵ (A)	I _{sat} 3 ⁶ (A)	I _{sat} 4 ⁷ (A)	DCR (mΩ) @ +20 °C	K-factor ⁸
FP1108R1-R10-R	100	81		100+	96	94	90		330
FP1108R1-R15-R	150	110	0F	77	72	66	63	0.00.50/	330
FP1108R1-R18-R	180	132	65	65	61	58	50	0.29±5%	330
FP1108R1-R21-R	210	151		55	51	48	45		330

8.

1. Open Circuit Inductance (OCL) Test Parameters: 100 kHz, 0.1 $\rm V_{rms'}$ 0.0 Adc, +25 °C


Full Load Inductance (FLL) Test Parameters: 100 kHz, 0.1 V_{ms}, I_{sa1}, +25 °C
 I_{ms}: DC current for an approximate temperature rise of 40 °C without core loss. Derating is necessary for AC currents. PCB layout, trace thickness and width, air-flow, and proximity of other heat generating components will affect the temperature rise. It is recommended that the temperature of the part not


exceed +125 °C under worst case operating conditions verified in the end application.
I_{sat}1 : Peak current for approximately 20% (R10 10%) rolloff @


 I_{sat}1 : Peak current for approximately 20% (R10 10%) rolloff @ +25 °C (R10 10%)

5. I_{sat}2: Peak current for approximately 20% (R10 10%) rolloff @ +85 °C

Dimensions - mm

Schematic

6. Isat3 : Peak current for approximately 20% (R10 10%) rolloff @ +100 °C

7. Isat4: Peak current for approximately 20% (R10 10%) rolloff @ +125 °C

 $\Delta \tilde{l}$ (peak to peak ripple current in amps).

9. Part Number Definition: FP1108Rx-yyy-R

- FP1108Rx = Product code and size

yyy= Inductance value in μH "-R" suffix = RoHS compliant

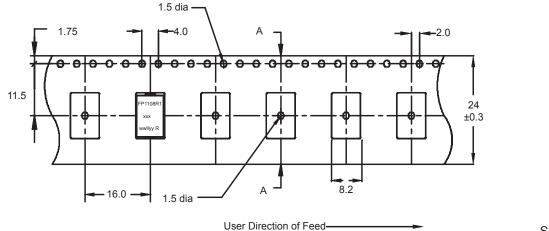
- Rx = DCR indicator

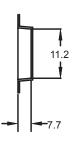
K-factor: Used to determine $B_{_{pp}}$ for core loss (see graph). $B_{_{pp}} = K * L * \Delta I$. $B_{_{pn}}$:(Gauss), K: (K-factor from table), L: (Inductance in μ H),

Front View

7.5

DCR measured from point "A" to point "B"


Part marking: FP1108R1 (Product code and size), xxx = Inductance value in μ H, wwllyy= date code, R= revision level Tolerances are ± 0.15 millimeters unless stated otherwise PCB tolerances are ± 0.1 millimeters unless otherwise specified.

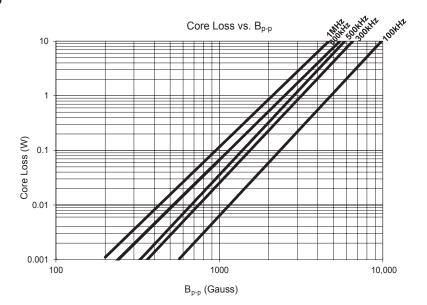

All soldering surfaces to be be coplanar within 0.1 millimeters.

Termination finish: matte Sn with Ni underplate

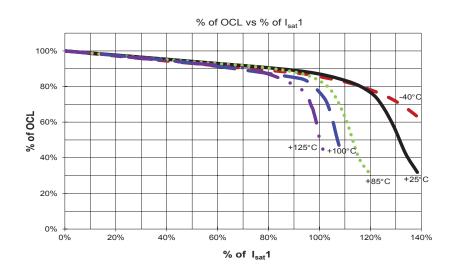
Do not route traces or vias underneath inductor

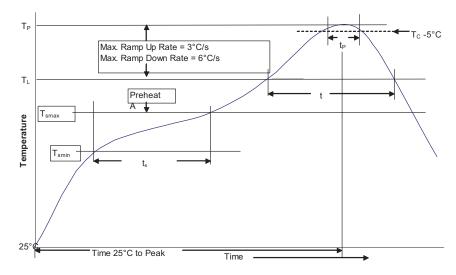
Packaging information - mm

Section A-A


Supplied in tape and reel packaging, 500 parts per 13" diameter reel,

FP1108R High frequency, high current power inductor


Temperature rise vs total loss


Core loss vs Bp-p

Inductance characteristics

Solder Reflow Profile

Table 1 - Sta	andard SnF	Pb Solder (T _C)	
	Volume	Volume	
Package	mm ³	mm ³	
Thickness	<350	≥350	
<2.5mm	235°C	220°C	
≥2.5mm	220°C	220°C	
Table 2 - Le	ad (Pb) Fre	e Solder (T _C)	
Table 2 - Le	ad (Pb) Fre Volume	e Solder (T _C) Volume	Volume
Table 2 - Le Package		• •	Volume mm ³
	Volume	Volume	
Package	Volume mm ³	Volume mm ³	mm ³
Package Thickness	Volume mm ³ <350 260°C	Volume mm ³ 350 - 2000	mm ³ >2000

Reference JDEC J-STD-020

Powerina Business Worldwide

Profile Feature		Standard SnPb Solder	Lead (Pb) Free Solder	
Preheat and Soak	 Temperature min. (T_{smin}) 	100°C	150°C	
	 Temperature max. (T_{smax}) 	150°C	200°C	
	 Time (T_{smin} to T_{smax}) (t_s) 	60-120 Seconds	60-120 Seconds	
Average ramp up rat	te T _{smax} to T _p	3°C/ Second Max.	3°C/ Second Max.	
Liquidous temperature (TL)		183°C	217°C	
Time at liquidous (t _L)		60-150 Seconds	60-150 Seconds	
Peak package body temperature (TP)*		Table 1	Table 2	
Time $(t_p)^{**}$ within 5 °C of the specified classification temperature (T_c)		20 Seconds**	30 Seconds**	
Average ramp-down rate (Tp to Tsmax)		6°C/ Second Max.	6°C/ Second Max.	
Time 25°C to Peak Temperature		6 Minutes Max.	8 Minutes Max.	

 * Tolerance for peak profile temperature (T_p) is defined as a supplier minimum and a user maximum.

** Tolerance for time at peak profile temperature (t_p) is defined as a supplier minimum and a user maximum.

Life Support Policy: Eaton does not authorize the use of any of its products for use in life support devices or systems without the express written approval of an officer of the Company. Life support systems are devices which support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Eaton reserves the right, without notice, to change design or construction of any products and to discontinue or limit distribution of any products. Eaton also reserves the right to change or update, without notice, any technical information contained in this bulletin.

Eaton Electronics Division 1000 Eaton Boulevard Cleveland, OH 44122 United States www.eaton.com/electronics

© 2017 Eaton All Rights Reserved Printed in USA Publication No. 10224 BU-SB14230 September 2017

Eaton is a registered trademark.

All other trademarks are property of their respective owners.