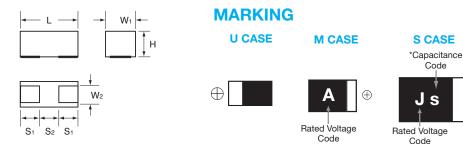
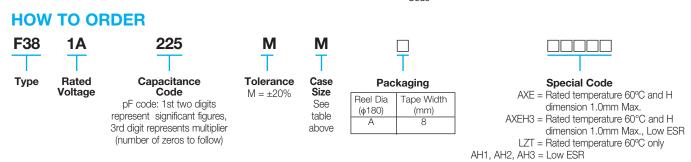
Conductive Polymer, Miniature, Undertab Solid Electrolytic Chip Capacitors

FEATURES

- Conductive polymer electrode
- Benign failure mode under recommended use conditions
- Compliant to the RoHS2 directive 2011/65/EU
- SMD facedown
- Small and low profile
- High volumetric efficiency


APPLICATIONS


- Smartphone
- Tablet PC
- Wireless module
- Portable game
- Bulk decoupling of SoC (System on chip)

CASE DIMENSIONS: millimeters (inches)

Code	EIA Code	EIA Metric	L	W ₁	W ₂	н	S ₁	S ₂
М	0603	1608-09	1.60 ^{+0.20} _{-0.10} (0.063 ^{+0.008} _{-0.004})	0.85 ^{+0.20} _{-0.10} (0.033 ^{+0.008} _{-0.004})	0.65±0.10 (0.026±0.004)	0.80±0.10*1 (0.031±0.004)	0.50±0.10 (0.020±0.004)	0.60±0.10 (0.024±0.004)
S	0805	2012-09	2.00 ^{+0.20} _{-0.10} (0.079 ^{+0.008} _{-0.004})	1.25 ^{+0.20} _{-0.10} (0.049 ^{+0.008} _{-0.004})	0.90±0.10 (0.035±0.004)	0.80±0.10 (0.031±0.004)	0.50±0.10 (0.020±0.004)	1.00±0.10 (0.039±0.004)
U	0402	1106-06	1.10±0.05 (0.043±0.002)	0.60±0.05 (0.024±0.002)	0.35±0.05 (0.014±0.002)	0.55±0.05 (0.022±0.002)	0.30±0.05 (0.012±0.002)	0.50±0.05 (0.020±0.002)

^{*1} F380J476MMAAXE: 1.0mm Max.

 \oplus

TECHNICAL SPECIFICATIONS

Category Temperature Range:	-55 to +105°C
Rated Temperature:	+85°C (*2)
Capacitance Tolerance:	±20% at 120Hz
Dissipation Factor:	Refer to next page (120Hz)
ESR 100kHz:	Refer to next page (120Hz)
Leakage Current:	Refer to next page
	At 20°C after application of rated voltage for 5 minutes
	Provided that:
	After 5 minute's application of rated voltage, leakage current at 105°C
	10 times or less than 20°C specified value.

^{*2} F380J476MMAAXE: Rated temperature +60°C Surge, endurance test temperature +60°C

Conductive Polymer, Miniature, Undertab Solid Electrolytic Chip Capacitors

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capacitance			*Cap		
μF	Code	4V (0G)	6.3V (0J)	10V (1A)	Code
1.0	105		U		А
2.2	225			М	J
4.7	475		U	М	S
10	106		M/M(AH1,AH2)	M/M(AH1)	а
22	226		M/M(AH3,AH1)/S/S(AH1)	M*4/S	j
33	336		M**/S	S**	n
47	476		M*4/M*4(H3)/S/S(AH1)	S**	S
68	686		S**		W
100	107	S**			А

Released ratings, (Low ESR)

RATINGS & PART NUMBER REFERENCE

AVX Part No.	Case Size	Capacitance (μF)	Rated Voltage (V)	Leakage Current (µA)	DF @ 120Hz (%)	ESR @ 100kHz (mΩ)	100kHz RMS Current (mA) 45°C	*3 △C/C (%)	MSL
4 Volt									
F380G107MSALZT	S	100	4	80.0	10	200	474	*	3
6.3 Volt									
F380J105MUA	U	1	6.3	0.6	6	1500	100	*	3
F380J475MUA	U	4.7	6.3	20.0	10	1500	100	*	3
F380J106MMA	М	10	6.3	10.0	8	500	224	*	3
F380J106MMAAH1	М	10	6.3	10.0	8	300	289	*	3
F380J106MMAAH2	М	10	6.3	10.0	8	200	354	*	3
F380J226MMA	М	22	6.3	13.9	10	500	224	*	3
F380J226MMAAH3	М	22	6.3	13.9	10	300	289	*	3
F380J226MMAAH1	М	22	6.3	13.9	10	200	354	*	3
F380J226MSA	S	22	6.3	13.9	10	200	474	*	3
F380J226MSAAH1	S	22	6.3	13.9	10	150	548	*	3
F380J336MMALZT	М	33	6.3	41.6	10	500	224	*	3
F380J336MSA	S	33	6.3	20.8	10	200	474	*	3
F380J476MMAAXE*4	М	47	6.3	59.2	10	500	224	*	3
F380J476MMAAXEH3	М	47	6.3	59.2	10	300	289	*	3
F380J476MSA	S	47	6.3	29.6	10	200	474	*	3
F380J476MSAAH1	S	47	6.3	29.6	10	150	548	*	3
F380J686MSALZT	S	68	6.3	86.0	10	200	474	*	3
			1	0 Volt					
F381A225MMA	М	2.2	10	10.0	6	500	224	*	3
F381A475MMA	М	4.7	10	10.0	6	500	224	*	3
F381A106MMA	М	10	10	10.0	15	500	224	*	3
F381A106MMAAH1	М	10	10	10.0	15	300	289	*	3
F381A226MMAAXE	М	22	10	44.0	10	500	224	*	3
F381A226MSA	S	22	10	22.0	10	200	474	*	3
F381A336MSALZT	S	33	10	99.0	10	200	474	*	3
F381A476MSALZT	S	47	10	94.0	10	200	474	*	3

Moisture Sensitivity Level (MSL) is defined according to J-STD-020.

3: △C/C Marked ""

Item	All Case (%)
Damp Heat, steady state	-20 to +30
Rapid change of temperature	±20
Resistance soldering heat	±20
Surge	±20
Endurance	±20

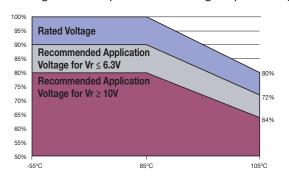
THE CORRELATIONS AMONG RATED VOLTAGE, SURGE VOLTAGE AND DERATED VOLTAGE

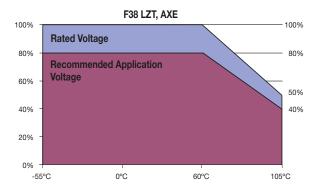
	F38 (Standard)		
Rated Voltage (V) ≤85°C	6.3	10	
85°C Surge Voltage (V)	8	13	
105°C Derated Voltage (V)	5	8	

	F38-LZT, F38-AXE		
Rated Voltage (V) ≤60°C	4	6.3	10
60°C Surge Voltage (V)	5.2	8	13
85°C Derated Voltage (V)	2.8	4.5	7.2
105°C Derated Voltage (V)	2	3.3	5

^{*4} Rated temperature 60°C and H dimension 1.0mm Max only. Please contact AVX when you need detail spec.

^{**}Rated temperature 60°C only. Please contact AVX when you need detail spec.


Please contact to your local AVX sales office when these series are being designed in your application.



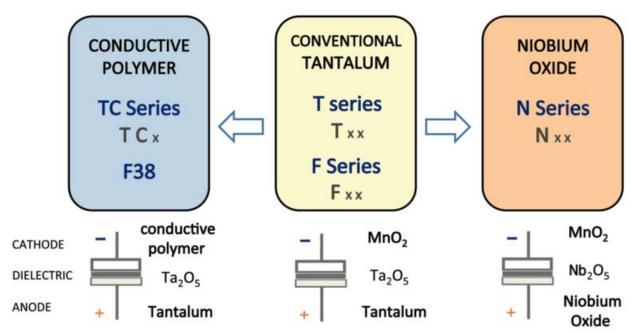
Conductive Polymer, Miniature, Undertab Solid Electrolytic Chip Capacitors

RECOMMENDED DERATING FACTOR

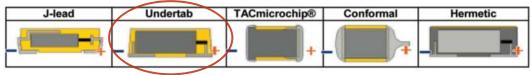
Voltage and temperature derating as percentage of Vr

QUALIFICATION TABLE

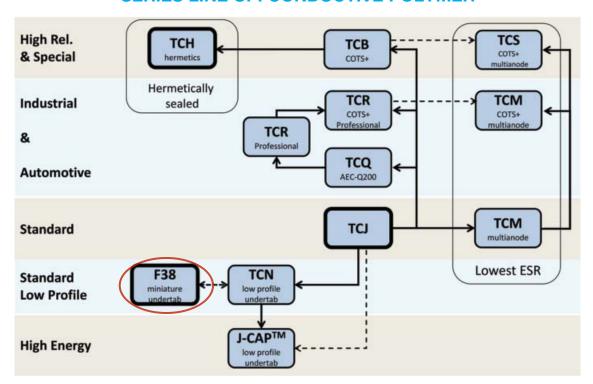
TEST	F38 series (Temperature range -55°C to +105°C)					
1251	Condition					
	At 40°C, 90 to 95% R.H., 500 hours (No voltage applied)					
Damp Heat	Capacitance Change Refer to page 228 (*3)					
(Steady State)	Dissipation Factor					
	Leakage Current					
	At -55°C / +105°C, 30 minutes each, 5 cycles					
Temperature Cycles	Capacitance Change Refer to page 228 (*3)					
Tomporatare Cycles	Dissipation Factor					
	Leakage Current					
Decistance to	5 seconds reflow at 260°C					
Resistance to	Capacitance Change Refer to page 228 (*3)					
Soldering Heat	Dissipation Factor					
	Leakage Current					
	After application of surge voltage in series with a 1kΩ resistor at the rate of 30 seconds ON, 30 seconds OFF,					
	for 1000 successive test cycles at 85°C (*2), capacitors shall meet the characteristic requirements in the table above.					
Surge	Capacitance Change Refer to page 228 (*3)					
	Dissipation Factor					
	Leakage Current					
	After 1000 hours' application of rated voltage in series with a 3Ω resistor at 85°C (*2),					
	capacitors shall meet the characteristic requirements in the table above.					
Endurance	Capacitance Change Refer to page 228 (*3)					
	Dissipation Factor					
	Leakage Current					
	After applying the pressure load of 5N for 10±1 seconds horizontally to the center of capacitor side body ====================================					
Shear Test	which has no electrode and has been soldered beforehand on a substrate, there shall be found neither 5N (0.51kg·f)					
	exfoliation nor its sign at the terminal electrode.					
	Keeping a capacitor surface-mounted on a substrate upside down and supporting the substrate at					
Terminal Strength	both of the opposite bottom points 45mm apart from the center of capacitor, the pressure strength is					
	applied with a specified jig at the center of substrate so that the substrate may bend by 1mm as					
	illustrated. Then, there shall be found no remarkable abnormality on the capacitor terminals.					


 $^{^{*}2}$ F380J476MMAAXE: Rated temperature +60°C Surge, endurance test temperature +60°C

NOTICE: DESIGN, SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.



Conductive Polymer, Miniature, Undertab Solid Electrolytic Chip Capacitors


AVX SOLID ELECTROLYTIC CAPACITOR ROADMAP

Five Capacitor Construction Styles

SERIES LINE UP: CONDUCTIVE POLYMER

