The EL7243 dual input, 2-channel driver achieves the same excellent switching performance of the EL7212 family while providing added flexibility. The power package makes this part extremely well suited for high frequency and heavy loads as in CCD applications. The 2-input logic and configuration is applicable to numerous power MOSFET drive circuits. As with other Elantec drivers, the EL7243 is excellent for driving large capacitive loads with minimal delay and switching times. "Shoot-thru" protection and latching circuits can be implemented by simply "crosscoupling" the 2 -channels.

Pinout

EL7243
(20-PIN THERMAL SOIC)
TOP VIEW

Note 1: Pins 4-7 and 14-17 are electrically connected. Note 2: Output pins must be tied together.

Manufactured under U.S. Patent Nos. 5,334,883, \#5,341,047

Features

- Logic AND/NAND input
- 3V and 5V Input compatible
- Clocking speeds up to 20 MHz
- 20ns Switching/delay time
- 2A Peak drive
- Isolated drains
- Low output impedance
- Low quiescent current
- Wide operating voltage -4.5 V to 16 V
- Pb-Free available (RoHS compliant)

Applications

- CCD Drivers
- Short circuit protected switching
- Under-voltage shut-down circuits
- Switch-mode power supplies
- Motor controls
- Power MOSFET switching
- Switching capacitive loads
- Shoot-thru protection
- Latching drivers

Ordering Information

PART NUMBER	PACKAGE	 REEL	PKG. DWG. \#
EL7243CM	20-Pin SOIC	-	MDP0027
EL7243CM-T13	20-Pin SOIC	$13^{\prime \prime}$	MDP0027
EL7243CMZ (See Note)	20-Pin SOIC (Pb-free)	-	MDP0027
EL7243CMZ-T13 (See Note)	20-Pin SOIC (Pb-free)	$13 "$	MDP0027

NOTE: Intersil Pb-free products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb -free soldering operations. Intersil Pb -free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.

Absolute Maximum Ratings $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Supply (V+ to Gnd) . 16.5V
Input Pins. -0.3 V to +0.3 V above V_{+}
Combined Peak Output Current. 4A
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Ambient Operating Temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating Junction Temperature . $125^{\circ} \mathrm{C}$
Power Dissipation
20-pin "Batwing" SOIC . 1500mW

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_{J}=T_{C}=T_{A}$

DC Electrical Specifications $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$ unless otherwise specified

PARAMETER	DESCRIPTION	TEST CONDITIONS	MIN	TYP	MAX	UNITS
INPUT						
$\mathrm{V}_{\text {IH }}$	Logic "1" Input Voltage		2.4			V
I_{H}	Logic "1" Input Current	@ $\mathrm{V}_{\text {DD }}$		0.1	10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IL }}$	Logic "0" Input Voltage				0.8	V
IIL	Logic "0" Input Current	@0V		0.1	10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {HVS }}$	Input Hysteresis			0.3		V
OUTPUT						
R_{OH}	Pull-Up Resistance	$\mathrm{I}_{\text {OUT }}=-100 \mathrm{~mA}$		3	6	Ω
R ${ }_{\text {OL }}$	Pull-Down Resistance	IOUT $=+100 \mathrm{~mA}$		4	6	Ω
IPK	Peak Output Current	Source Sink		$\begin{aligned} & 2 \\ & 2 \end{aligned}$		A
IDC	Continuous Output Current	Source/Sink	200			mA
POWER SUPPLY						
IS	Power Supply Current	Inputs High		1	2.5	mA
V_{S}	Operating Voltage		4.5		16	V

AC Electrical Specifications $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}=15 \mathrm{~V}$ unless otherwise specified

PARAMETER	DESCRIPTION	TEST CONDITIONS	MIN	TYP	MAX	UNITS
SWITCHING CHARACTERISTICS						
t_{R}	Rise Time	$\begin{aligned} & C_{L}=500 \mathrm{pF} \\ & C_{L}=1000 \mathrm{pF} \end{aligned}$			$\begin{aligned} & 10 \\ & 20 \end{aligned}$	ns
t_{F}	Fall Time	$\begin{aligned} & C_{L}=500 \mathrm{pF} \\ & C_{L}=1000 \mathrm{pF} \end{aligned}$			$\begin{aligned} & 10 \\ & 20 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{D}-\mathrm{ON}}$	Turn-On Delay Time			20	25	ns
tD-OFF	Turn-Off Delay Time			20	25	ns

Timing Table

Standard Test Configuration

Pins 19, 20 connected to V+

Simplified Schematic

Typical Performance Curves

"ON" Resistance vs Supply Voltage

Typical Performance Curves (Continued)

Delay vs Temperature

Applications Information

EL7243 Macromodel

EL7243 Macromodel

* EL7243 Macromodel
* Revision A, January 1996
* Connections Gnd
* | Inp+
*
* | | |np
* | | | | VCC
$\begin{array}{llllll}. s u b c k t ~ M 7243 ~ & 1 & 2 & 3 & 8 & 10\end{array}$
V1 1211.6
R1 1315 1k
R2 1415 5k
R5 1112100
C1 151 43.3pF
D1 1413 dmod
X1 131121 comp1
X2 1612151 comp1
V2 2211.6
R6 2325 1K
R7 2425 5K
R8 2122100
C2 251 43.3pF
D2 2423 dmod
X3 232131 comp1
X4 2625221 comp1
X5 1626171 And-gate
sp 108171 spmod
sn 81171 snmod
g1 111131938 u
g2 $211231938 u$
.model dmod d
.model spmod vswitch ron=3 roff=2meg von=1 voff=1.5
.model snmod vswitch ron=4 roff=2meg von=3 voff=2
.ends M7243
* AND Gate Subcircuit*
.subckt And-gate inp1 inp2 out-AS Vss-A
el out-A Vss-A table $\left\{v(\text { inp1 })^{\star} v(\right.$ inp2 $\left.)\right\}=(0,3.2)(3.2,0)$
Rout-a out-a vss-a 10 meg
rinpa inp1 vss-a 10 meg
rinpb inp2 vss-a 10 meg
.ends and-gate
* Comparator Subcircuit *
.subckt comp1 out inp inm vss
el out vss table $\left\{(\mathrm{v}(\mathrm{inp})-\mathrm{v}(\mathrm{inm}))^{*} 5000\right\}=(0,0)(3.2,3.2)$
Rout out vss 10meg
Rinp inp vss 10meg
Rinm inm vss 10 meg
.ends omp1
© Copyright Intersil Americas LLC 1996-2005. All Rights Reserved.
All trademarks and registered trademarks are the property of their respective owners.

For additional products, see www.intersil.com/en/products.html
Intersil products are manufactured, assembled and tested utilizing IS09001 quality systems as noted
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

