SCES356C - JUNE 2001 - REVISED FERUARY 2003 #### ORDERING INFORMATION | TA | PACK | AGE [†] | ORDERABLE
PART NUMBER | TOP-SIDE
MARKING | |---------------|-------------|------------------|--------------------------|---------------------| | -40°C to 85°C | TSSOP – DGG | Tape and reel | SN74GTLPH1627DGGR | GTLPH1627 | [†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. OEC, TI-OPC, and Widebus are trademarks of Texas Instruments. SCES356C - JUNE 2001 - REVISED FERUARY 2003 ### description (continued) The SN74GTLPH1627 is a high-drive, 18-bit bus transceiver that provides LVTTL-to-GTLP and GTLP-to-LVTTL signal-level translation. The device allows for transparent and latched modes of data transfer. Additionally, with the use of the clock-mode select (CMS) input, the device can be used in source-synchronous and clock-synchronous applications. Source-synchronous applications require the skew between the clock output and data output to be minimized for optimum maximum-frequency system performance. In order to reduce this skew, a flexible setup time adjustment (FSTA) feature is incorporated into the device that sets a predetermined delay between the clock and data. The CMS and direction (DIR) inputs control the mode of the device. The system clock (SYSCLK) and CLKOUT pins are LVTTL compatible, while the source synchronous I/O is GTLP compatible. The benefits include compensation for output-to-output skew coming from the driver itself, and compensation for process skew if more than one driver is used. The device provides a high-speed interface between cards operating at LVTTL logic levels and a backplane operating at GTLP signal levels. High-speed (about three times faster than standard TTL or LVTTL) backplane operation is a direct result of GTLP's reduced output swing (<1 V), reduced input threshold levels, improved differential input, OEC™ circuitry, and TI-OPC™ circuitry. Improved GTLP OEC and TI-OPC circuits minimize bus-settling time and have been designed and tested using several backplane models. The high drive allows incident-wave switching in heavily loaded backplanes, with equivalent load impedance down to 11 Ω . GTLP is the Texas Instruments derivative of the Gunning Transceiver Logic (GTL) JEDEC standard JESD 8-3. The ac specification for the SN74GTLPH1627 is given only at the preferred higher noise-margin GTLP, but the user has the flexibility of using this device at either GTL ($V_{TT} = 1.2 \text{ V}$ and $V_{REF} = 0.8 \text{ V}$) or GTLP ($V_{TT} = 1.5 \text{ V}$ and $V_{REF} = 1 \text{ V}$) signal levels. For information on using GTLP devices in FB+/BTL applications, refer to TI application reports, *Texas Instruments GTLP Frequently Asked Questions*, literature number SCEA019, and *GTLP in BTL Applications*, literature number SCEA017. Normally, the B port operates at GTLP signal levels. The A-port and control inputs operate at LVTTL logic levels, but are 5-V tolerant and are compatible with TTL and 5-V CMOS inputs. V_{REF} is the B-port differential input reference voltage. This device is fully specified for live-insertion applications using l_{off} , power-up 3-state, and BIAS V_{CC} . The l_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict. The BIAS V_{CC} circuitry precharges and preconditions the B-port input/output connections, preventing disturbance of active data on the backplane during card insertion or removal, and permits true live-insertion capability. This GTLP device features TI-OPC circuitry, which actively limits the overshoot caused by improperly terminated backplanes, unevenly distributed cards, or empty slots during low-to-high signal transitions. This improves signal integrity, which allows adequate noise margin to be maintained at higher frequencies. High-drive GTLP backplane interface devices feature adjustable edge-rate control (ERC). Changing the ERC input voltage between low and high adjusts the B-port output rise and fall times. This allows the designer to optimize system data-transfer rate and signal integrity to the backplane load. Active bus-hold circuitry holds unused or undriven LVTTL data inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended. When V_{CC} is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, the output-enable (\overline{OE}) input should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. ## functional description The SN74GTLPH1627 is a high-drive (100 mA), 18-bit bus transceiver containing D-type latches and D-type flip-flops for data-path operation in transparent or latched modes and can replace any of the functions shown in Table 1. Data polarity is noninverting. Table 1. SN74GTLPH1627 Bus Transceiver Replacement Functions | FUNCTION | 8 BIT | 9 BIT | 10 BIT | 16 BIT | 18 BIT | | | |---|------------------|-------|--------|------------------------|--------|--|--| | Transceiver | '245, '623, '645 | '863 | '861 | '16245, '16623 | '16863 | | | | Buffer/driver | '241, '244, '541 | | '827 | '16241, '16244, '16541 | '16825 | | | | Latched transceiver | '543 | | | '16543 | '16472 | | | | Latch | '373, '573 | '843 | '841 | '16373 | '16843 | | | | SN74GTLPH1627 bus transceiver replaces all above functions. | | | | | | | | Additionally, the device allows for conversion of the system clock (SYSCLK) to GTLP signal levels (SSCLK) and LVTTL signal levels (CLKOUT). It also provides conversion of a GTLP source-synchronous clock to LVTTL signal levels (CLKOUT). The device allows for conversion of the LVTTL system clock (SYSCLK) to GTLP (SSCLK) and LVTTL (CLKOUT) signal levels when used as the transmitter and GTLP source-synchronous clock (SSCLK) to LVTTL (CLKOUT) signal levels when used as the receiver in source-synchronous applications. Source-synchronous operation removes time-of-flight restrictions and allows for increased data throughput. CMS is used to switch between system-synchronous mode and clock-synchronous mode. The clock output-enable (CKOE) input is used to switch between latched and transparent mode. Data flow in each direction is controlled by $\overline{\text{CKOE}}$, clock (SYSCLK or SSCLK), direction (DIR), and $\overline{\text{OE}}$. $\overline{\text{OE}}$ controls the 18 bits of data. The CLKOUT/SSCLK buffered clock path for the A-to-B and B-to-A directions is controlled by $\overline{\text{CKOE}}$. In the data isolation mode ($\overline{\text{OE}}$ high, $\overline{\text{CKOE}}$ low), A data may be stored in one register and/or B data may be stored in the other register. ## logic diagram (positive logic) # SN74GTLPH1627 18-BIT LVTTL-TO-GTLP BUS TRANSCEIVER WITH SOURCE SYNCHRONOUS CLOCK OUTPUTS SCES356C – JUNE 2001 – REVISED FERUARY 2003 #### **Function Tables** #### **A-TO-B DIRECTION** | INPUTS | | | | | | | OUTPUTS | | MODE | | | |--------|----|-----|-----|--------|---|--------|---------|----------------|----------------------|-----------------------|--| | CKOE | OE | CMS | DIR | SYSCLK | Α | SSCLK | CLKOUT | В | MODE | | | | L | L | Х | L | H or L | Χ | SYSCLK | SYSCLK | B ₀ | Latched storage of A | | | | L | L | Х | L | 1 | L | SYSCLK | SYSCLK | L | Clocked storage of A | Source
synchronous | | | L | L | Χ | L | 1 | Н | SYSCLK | SYSCLK | Н | Clocked Storage of A | Synonicilous | | | L | Н | Х | L | Х | Χ | SYSCLK | SYSCLK | Z | Data isolation | | | | Н | L | Х | L | Х | L | Z | Z | L | Transparent transr | niccion of A | | | Н | L | Χ | L | Χ | Н | Z | Z | Н | riansparent transi | HISSIOH OF A | | | Н | Н | Х | Х | Х | Χ | Z | Z | Z | Isolation | | | | L | Н | Н | Х | 1 | Х | SYSCLK | SYSCLK | Z | Transmit SVSCLV | | | | L | Н | Н | Χ | H or L | Χ | SYSCLK | SYSCLK | Z | Transmit SYSCLK | | | #### **B-TO-A DIRECTION** | | | | INPUT | rs | | | OUTPUTS | | | | | | |------|----|-----|-------|------------|------------|---|---------|--------|----------------|----------------------|-----------------------|--| | CKOE | ŌĒ | CMS | DIR | SYSCLK | SSCLK | В | SSCLK | CLKOUT | Α | MODE | | | | L | L | L | Н | Х | H or L | Χ | Input | SSCLK | A ₀ | Latched storage of B | _ | | | L | L | L | Н | Х | 1 | L | Input | SSCLK | L | Clasked starage of D | Source
synchronous | | | L | L | L | Н | Χ | \uparrow | Н | Input | SSCLK | Н | Clocked storage of B | Syncinonous | | | L | Н | L | Н | Х | Х | Χ | Input | SSCLK | Z | Data isolation | | | | L | L | Н | Н | H or L | Output | Χ | SYSCLK | SYSCLK | A ₀ | Latched storage of B | <u>.</u> | | | L | L | Н | Н | 1 | Output | L | SYSCLK | SYSCLK | L | Clocked storage of P | Clock
synchronous | | | L | L | Н | Н | \uparrow | Output | Н | SYSCLK | SYSCLK | Н | Clocked storage of B | Syricinonous | | | L | Н | Н | Н | Х | Output | Χ | SYSCLK | SYSCLK | Z | Data isola | tion | | | Н | L | Х | Н | Х | Output | L | Z | Z | L | Transparent transp | minoion of D | | | Н | L | Χ | Н | Χ | Output | Н | Z | Z | Н | Transparent transr | HISSION OF B | | | Н | Н | Х | Х | Х | Output | Χ | Z | Z | Z | Isolation | | | | L | Н | L | Х | Х | 1 | Χ | Input | SSCLK | Z | Descript 000HK | | | | L | Н | L | Χ | Х | H or L | Χ | Input | SSCLK | Z | Receive SS | OLK | | ### **OUTPUT EDGE-RATE CONTROL (ERC)** | INPUT
ERC
LOGIC LEVEL | OUTPUT
B-PORT
EDGE RATE | |-----------------------------|-------------------------------| | Н | Slow | | L | Fast | SCES356C - JUNE 2001 - REVISED FERUARY 2003 ## absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† | Supply voltage range, V _{CC} and BIAS V _{CC} | 0.5 V to 4.6 V | |--|-------------------------| | Input voltage range, V _I (see Note 1): A-port and control inputs | -0.5 V to 7 V | | B port and V _{REF} | 0.5 V to 4.6 V | | Voltage range applied to any output in the high-impedance or power-off state, VO | | | (see Note 1): A port | $-0.5\ V$ to 7 V | | B port | \dots –0.5 V to 4.6 V | | Current into any output in the low state, I _O : A port | 48 mA | | B port | 200 mA | | Current into any A-port output in the high state, I _O (see Note 2) | 48 mA | | Continuous current through each V _{CC} or GND | ±100 mA | | Input clamp current, I_{IK} ($V_I < 0$) | –50 mA | | Output clamp current, I _{OK} (V _O < 0) | –50 mA | | Package thermal impedance, θ _{JA} (see Note 3) | 55°C/W | | Storage temperature range, T _{stq} | 65°C to 150°C | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. - NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. - 2. This current flows only when the output is in the high state and $V_O > V_{CC}$. - 3. The package thermal impedance is calculated in accordance with JESD 51-7. SCES356C - JUNE 2001 - REVISED FERUARY 2003 ### recommended operating conditions (see Notes 4 through 7) | | | | MIN | NOM | MAX | UNIT | | |---|------------------------------------|-------------------------|------------------------|-----|------------------------|------|--| | V _{CC} ,
BIAS V _{CC} | Supply voltage | | 3.15 | 3.3 | 3.45 | V | | | \/ | Tormination voltage | GTL | 1.14 | 1.2 | 1.26 | V | | | VTT | Termination voltage | GTLP | 1.35 | 1.5 | 1.65 | V | | | V | Reference voltage | GTL | 0.74 | 0.8 | 0.87 | V | | | VREF | Reference voltage | GTLP | 0.87 | 1 | 1.1 | V | | | V. | Input voltage | B port and SSCLK | | | V_{TT} | V | | | | input voltage | Except B port and SSCLK | | Vсс | 5.5 | V | | | V | High-level input voltage | B port and SSCLK | V _{REF} +0.05 | | | V | | | VIH | nigh-level input voltage | Except B port and SSCLK | 2 | | | V | | | V., | Low-level input voltage | B port and SSCLK | | | V _{REF} -0.05 | V | | | VIL | Low-level input voltage | Except B port and SSCLK | | | 0.8 | V | | | lık | Input clamp current | | | | -18 | mA | | | loн | High-level output current | A port and CLKOUT | | | -24 | mA | | | la. | Low lovel output ourrent | A port and CLKOUT | | | 24 | mA | | | lor | Low-level output current | B port and SSCLK | | | 100 | MA | | | Δt/Δν | Input transition rise or fall rate | Outputs enabled | | | 10 | ns/V | | | Δt/ΔV _{CC} | Power-up ramp rate | | 20 | | | μs/V | | | TA | Operating free-air temperature | | -40 | | 85 | °C | | NOTES: 4. All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004. - 5. Proper connection sequence for use of the B-port I/O precharge feature is GND and BIAS V_{CC} = 3.3 V first, I/O second, and V_{CC} = 3.3 V last, because the BIAS V_{CC} precharge circuitry is disabled when any V_{CC} pin is connected. The control and V_{REF} inputs can be connected anytime, but normally are connected during the I/O stage. If B-port precharge is not required, any connection sequence is acceptable, but generally, GND is connected first. - 6. V_{TT} and R_{TT} can be adjusted to accommodate backplane impedances if the dc recommended I_{OL} ratings are not exceeded. - V_{REF} can be adjusted to optimize noise margins, but normally is two-thirds V_{TT}. TI-OPC circuitry is enabled in the A-to-B direction and is activated when V_{TT} > 0.7 V above V_{REF}. If operated in the A-to-B direction, V_{REF} should be set to within 0.6 V of V_{TT} to minimize current drain. SCES356C - JUNE 2001 - REVISED FERUARY 2003 ## electrical characteristics over recommended operating free-air temperature range for GTLP (unless otherwise noted) | P/ | ARAMETER | TEST CONDITIONS | | MIN | TYP [†] | MAX | UNIT | | |---------------------|---------------------------|--|-----------------------------|----------------------|------------------|-------------------|------|--| | VIK | | V _{CC} = 3.15 V, | I _I = -18 mA | | | -1.2 | V | | | | | V _{CC} = 3.15 V to 3.45 V, | I _{OH} = -100 μA | V _{CC} -0.2 | | | | | | Vон | A port and CLKOUT | Vac 245 V | I _{OH} = -12 mA | 2.4 | | | V | | | | OLKOOT | V _{CC} = 3.15 V | I _{OH} = -24 mA | 2 | | | | | | | | V _{CC} = 3.15 V to 3.45 V, | I _{OL} = 100 μA | | | 0.2 | | | | | A port and CLKOUT | V _{CC} = 3.15 V | I _{OL} = 12 mA | | | 0.4 | | | | | | vCC = 3.15 v | I _{OL} = 24 mA | | | 0.5 | | | | VOL | | V _{CC} = 3.15 V to 3.45 V, | I _{OL} = 100 μA | | | 0.2 | V | | | | B name and CCCLK | | I _{OL} = 10 mA | | | 0.2 | | | | | B port and SSCLK | V _{CC} = 3.15 V | I _{OL} = 64 mA | | | 0.4 | | | | | | | I _{OL} = 100 mA | | | 0.55 | | | | lį | SYSCLK and control inputs | V _{CC} = 3.45 V, | V _I = 0 to 5.5 V | | | ±10 | μΑ | | | loz [‡] | B port and SSCLK | $V_{CC} = 3.45 \text{ V}, V_{REF} \text{ within } 0.6 \text{ V of } V_{TT},$ | V _O = 0 to 2.3 V | | | ±10 | | | | lOZ+ | CLKOUT | V _{CC} = 3.45 V, | V _O = 0 to 5.5 V | | | ±10 | μΑ | | | I _{OZH} ‡ | A port | V _{CC} = 3.45 V, | VO = VCC | | : | 10 | μΑ | | | l _{OZL} ‡ | A port | V _{CC} = 3.45 V, | V _O = GND | | | -10 | μΑ | | | I _{BHL} § | A port | V _{CC} = 3.15 V, | V _I = 0.8 V | 75 | | | μΑ | | | I _{BHH} ¶ | A port | V _{CC} = 3.15 V, | V _I = 2 V | - 75 | | | μΑ | | | I _{BHLO} # | A port | $V_{CC} = 3.45 \text{ V},$ | $V_I = 0$ to V_{CC} | 500 | | | μΑ | | | Івнно | A port | V _{CC} = 3.45 V, | $V_I = 0$ to V_{CC} | -500 | | | μΑ | | | | | $V_{CC} = 3.45 \text{ V}, I_{O} = 0,$ | Outputs high | | | ±10 10 -10 -50 50 | | | | Icc | A port, B port, or SSCLK | V_I (A-port or control input) = V_{CC} or GND, | Outputs low | | | 50 | mA | | | | JOGOLK | V _I (B port) = V _{TT} or GND | Outputs disabled | | | 50 | | | | ∆lcc≉ | | V_{CC} = 3.45 V, One A-port or control input at Other A-port or control inputs at V_{CC} or GN | | | | 1.5 | mA | | | 0. | SYSCLK inputs | V _I = 3.15 V or 0 | | | 4 | 5 | | | | Ci | Control inputs | V _I = 3.15 V or 0 | | | 3.5 | 5.5 | pF | | | C. | A port | V _O = 3.15 V or 0 | | | 7.5 | 9.5 | pF | | | C _{io} | B port or SSCLK | V _O = 1.5 V or 0 | | | 9.5 | 12 | | | | Со | CLKOUT | V _O = 3.15 V or 0 | | | 6 | 7.5 | pF | | [†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. For I/O ports, the parameter I_I includes the off-state output leakage current. [§] The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL}max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{IL}max. [¶] The bus-hold circuit can source at least the minimum high sustaining current at V_{IH}min. I_{BHH} should be measured after raising V_{IN} to V_{CC} and then lowering it to V_{IH}min. [#]An external driver must source at least I_{BHLO} to switch this node from low to high. An external driver must sink at least IBHHO to switch this node from high to low. ^{*}This is the increase in supply current for each input that is at the specified TTL voltage level, rather than V_{CC} or GND. SCES356C - JUNE 2001 - REVISED FERUARY 2003 ## hot-insertion specifications for A port over recommended operating free-air temperature range | PARAMETER | | TEST CONDITION | NS . | MIN | MAX | UNIT | |------------------|---|--------------------------------|---------------------------------|-----|-----|------| | l _{off} | $V_{CC} = 0$, | BIAS $V_{CC} = 0$, | V_{I} or $V_{O} = 0$ to 5.5 V | | 10 | μΑ | | lozpu | $V_{CC} = 0 \text{ to } 1.5 \text{ V},$ | $V_0 = 0.5 V \text{ to } 3 V,$ | OE = 0 | | ±30 | μΑ | | IOZPD | $V_{CC} = 1.5 \text{ V to } 0,$ | $V_0 = 0.5 \text{ V to 3 V},$ | OE = 0 | | ±30 | μΑ | ## live-insertion specifications for B port over recommended operating free-air temperature range | PARAMETER | | TEST CONDITIONS | | MIN | MAX | UNIT | |----------------|---|--|--|------------------|------|------| | loff | $V_{CC} = 0$, | BIAS $V_{CC} = 0$, | V_I or $V_O = 0$ to 1.5 V | | 10 | μΑ | | lozpu | $V_{CC} = 0 \text{ to } 1.5 \text{ V},$ | BIAS $V_{CC} = 0$, | $V_0 = 0.5 \text{ V to } 1.5 \text{ V}, \overline{OE} = 0$ | | ±30 | μΑ | | IOZPD | $V_{CC} = 1.5 \text{ V to } 0,$ | BIAS $V_{CC} = 0$, | $V_0 = 0.5 \text{ V to } 1.5 \text{ V}, \overline{OE} = 0$ | | ±30 | μΑ | | Inc (PIAS Vac) | V _{CC} = 0 to 3.15 V | BIAS V _{CC} = 3.15 V to 3.45 V, | V _O (B port) = 0 to 1.5 V | | 5 | mA | | ICC (BIAS VCC) | V _{CC} = 3.15 V to 3.45 V | DIAS VCC = 3.15 V to 3.45 V, | VO (Β port) = 0 to 1.5 V | 10
±30
±30 | μΑ | | | VO | $V_{CC} = 0$, | BIAS $V_{CC} = 3.3 \text{ V}$, | IO = 0 | 0.95 | 1.05 | V | | IO | $V_{CC} = 0$, | BIAS $V_{CC} = 3.15 \text{ V to } 3.45 \text{ V},$ | V _O (B port) = 0.6 V | -1 | · | μΑ | ## timing requirements over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (unless otherwise noted) | | | | MIN | MAX | UNIT | |--------------------|-----------------|---|-----|---|------| | f _{clock} | Clock frequency | | | 175 | MHz | | | | SYSCLK (A to B) or (B to A) high or low | 2.5 | | | | | | SYSCLK to CLKOUT high or low | 2.8 | | | | | | SYSCLK to SSCLK (FSTA GND) high or low | 2.8 | | | | t_{W} | Pulse duration | SYSCLK to SSCLK (FSTA V _{CC}) high or low | 2.3 | | ns | | | | SSCLK (B to A) high or low | 2.8 | | | | | | SSCLK to CLKOUT high or low | 2.8 | | | | | | CKOE (A to B) or (B to A) high | 2.5 | .5 .8 .8 .8 .8 .8 .5 .1 .2 .6 .4 .8 .3 .7 .1 0 | | | | | A before SYSCLK↑ | 1.1 | | | | | | B before SYSCLK↑ | 2.2 | | | | t _{su} | Setup time | B before SSCLK↑ | 1.6 | | ns | | | | A before CKOE↓ | 1.4 | | | | | | B before CKOE↓ | 0.8 | 175 2.5 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.5 1.1 2.2 1.6 1.4 0.8 0.3 0.7 1.1 | | | | | A after SYSCLK↑ | 0.3 | | | | | | B after SYSCLK↑ | 0.7 | | | | th | Hold time | B after SSCLK↑ | 1.1 | | ns | | | | A after CKOE↓ | 0 | | | | | | B after CKOE↓ | 0.7 | | | SCES356C - JUNE 2001 - REVISED FERUARY 2003 # switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (see Figure 1) | PARAMETER | СГОСК | FROM
(INPUT) | TO
(OUTPUT) | EDGE RATET | FSTA | MIN | түр‡ | MAX | UNIT | | |------------------|--------|--------------------------------|----------------|------------|--------|-----|------|-----|----------|----| | | | A or B | B or A | - | _ | 175 | | | | | | | CVCCLK | SYSCLK | CLKOUT | - | _ | 175 | | | | | | | SYSCLK | SYSCLK | SSCLK | - | GND | 175 | | | MHz | | | fmax | | SYSCLK | SSCLK | - | VCC | 150 | | | IVIHZ | | | l | SSCLK | В | А | - | - | 175 | | | | | | | SSCLK | SSCLK | CLKOUT | - | - | 175 | | | | | | | ı | A | В | Fast | - | 2.3 | | 6.2 | | | | l I | ı |] ^ | Ь | Slow | - | 3 | | 7.3 | | | | l [| - | CKOE | В | Fast | - | 2.6 | | 6 | ns | | | ^t pd | ı | CKOE | Ь | Slow | _ | 3.1 | | 7.6 | 115 | | | | ı | SYSCLK | В | Fast | _ | 2.6 | | 6 | 6
7.1 | | | | 1 | STOCER | В | Slow | _ | 3 | | 7.1 | | | | t _{en} | | OE B Fast | OE B | ь | East | | 2.3 | | 5.1 | ns | | | ı | | _ | 2.7 | | 5.5 | 115 | | | | | t _{en} | _ | OF | OE B | Slow | _ | 2.9 | | 6 | ns | | | ^t dis | _ | OE . | В | Slow | _ | 3.6 | | 6.6 | | | | | _ | Rise time, B and SSCLK outputs | | Fast | | 1.1 | | | ns | | | t _r | _ | (20% to | (20% to 80%) | | _ | 2.1 | | | 113 | | | t _f | | Fall time, B and | | Fast | Fast _ | | 1.8 | | | | | ነ | | (80% to | 0 20%) | Slow | _ | | 2.4 | | ns | | | | ı | В | Α | _ | - | 1.5 | | 4.6 | | | | | _ | CKOE | Α | _ | _ | 2.1 | | 6 | | | | l [| - | SYSCLK | А | - | _ | 1.9 | | 6 | | | | ^t pd | - | SSCLK | А | - | - | 2.3 | | 6.6 | ns | | | | - | SYSCLK | CLKOUT | - | - | 3.3 | | 8.3 | | | | i | | SSCLK | CLKOUT | - | - | 3.7 | | 9 | | | | t _{en} | | 05 | | | | 1.6 | | 5 | | | | ^t dis | _ | ŌE | Α | _ | _ | 2.1 | | 6.4 | ns | | | t _{en} | | CKOE | CLKOLIT | ĺ | | 2 | | 5.2 | | | | ^t dis | _ | CRUE | CLKOUT | _ | _ | 2.4 | | 6.1 | ns | | [†] Slow (ERC = H) and Fast (ERC = L) [‡] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. SCES356C - JUNE 2001 - REVISED FERUARY 2003 skew characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{REF} = 1 V (unless otherwise noted); standard lumped loads, C_L = 30 pF for B port (see Figure 1)[†] | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | EDGE
RATE‡ | FSTA | TEST
CONDITIONS | MIN | MAX | UNIT | |------------------------------------|-----------------|------------------------------|---------------|------|--|-----|-----|------| | t _{sk(LH)} § | SYSCLK | В | Fast | - | | | 0.5 | ns | | t _{sk(HL)} § | OTOOLIK | | | | | | 0.5 | 113 | | t _{sk(LH)} § | SYSCLK | В | Slow | _ | | | 0.5 | ns | | t _{sk(HL)} § | | | 0.0 | | | | 0.5 | | | t _{sk(LH)} § | SYSCLK | SSCLK + ΔB
(see Figure 2) | Fast | GND | V _{CC} = 3.15 V, T = 85°C | 3.2 | 4.6 | ns | | | | | | | V _{CC} = 3.3 V, T = 25°C | 2.9 | 4.3 | | | | | | | | $V_{CC} = 3.45 \text{ V}, T = -40^{\circ}\text{C}$ | 2.8 | 4.1 | | | ^t sk(HL) [§] | SYSCLK | SSCLK + ΔB
(see Figure 2) | Fast | GND | V _{CC} = 3.15 V, T = 85°C | 3.6 | 5 | ns | | | | | | | $V_{CC} = 3.3 \text{ V, T} = 25^{\circ}\text{C}$ | 3.4 | 4.8 | | | | | | | | $V_{CC} = 3.45 \text{ V}, T = -40^{\circ}\text{C}$ | 3.3 | 4.6 | | | _ | SYSCLK | SSCLK + ∆B
(see Figure 2) | Slow | GND | V _{CC} = 3.15 V, T = 85°C | 3 | 4.6 | ns | | t _{sk(LH)} § | | | | | $V_{CC} = 3.3 \text{ V, T} = 25^{\circ}\text{C}$ | 2.6 | 4.3 | | | | | | | | $V_{CC} = 3.45 \text{ V, T} = -40^{\circ}\text{C}$ | 2.4 | 4 | | | | SYSCLK | SSCLK + ∆B
(see Figure 2) | Slow | GND | $V_{CC} = 3.15 \text{ V}, T = 85^{\circ}\text{C}$ | 3.7 | 5.2 | ns | | t _{sk(HL)} § | | | | | V _{CC} = 3.3 V, T = 25°C | 3.6 | 5.1 | | | | | | | | $V_{CC} = 3.45 \text{ V, T} = -40^{\circ}\text{C}$ | 3.5 | 5 | | | | SYSCLK | SSCLK + ∆B
(see Figure 2) | Fast | VCC | V _{CC} = 3.15 V, T = 85°C | 6.5 | 8.3 | ns | | t _{sk(LH)} § | | | | | V _{CC} = 3.3 V, T = 25°C | 6.3 | 8.2 | | | | | | | | V _{CC} = 3.45 V, T = -40°C | 5.6 | 7.4 | | | t _{sk(HL)} § | SYSCLK | SSCLK + ΔB (see Figure 2) | Fast | Vcc | V _{CC} = 3.15 V, T = 85°C | 7 | 8.7 | ns | | | | | | | V _{CC} = 3.3 V, T = 25°C | 6.5 | 8.3 | | | | | | | | V _{CC} = 3.45 V, T = -40°C | 6.2 | 8 | | | ^t sk(LH) [§] | SYSCLK | SSCLK + ΔB
(see Figure 2) | Slow | Vcc | V _{CC} = 3.15 V, T = 85°C | 6.4 | 8.3 | ns | | | | | | | V _{CC} = 3.3 V, T = 25°C | 5.9 | 7.7 | | | | | | | | V _{CC} = 3.45 V, T = -40°C | 5.5 | 7.4 | | | t _{sk(HL)} § | SYSCLK | SSCLK + ΔB (see Figure 2) | Slow | Vcc | V _{CC} = 3.15 V, T = 85°C | 7.2 | 8.9 | | | | | | | | V _{CC} = 3.3 V, T = 25°C | 6.8 | 8.6 | ns | | | | | | | V _{CC} = 3.45 V, T = -40°C | 6.6 | 8.3 | | | t _{sk(t)} § | SYSCLK | В | Fast | _ | | | 1.4 | | | | | | Slow | _ | | | 2 | ns | | ^t sk(prLH) [¶] | 0)(00) 1(| В | | | | | 1.8 | | | t _{sk(prHL)} ¶ | SYSCLK | | | _ | | 2.8 | | ns | [†] Actual skew values between the GTLP outputs could vary on the backplane due to the loading and impedance seen by the device. [‡] Slow (ERC = H) and Fast (ERC = L) [§] t_{sk(LH)}/t_{sk(HL)} and t_{sk(t)} – Output-to-output skew is defined as the absolute value of the difference between the actual propagation delay for all outputs with the same packaged device. The specifications are given for specific worst-case V_{CC} and temperature. The specifications apply to any outputs switching in the same direction, either high to low [t_{sk(HL)}], low to high [t_{sk(LH)}] or in opposite directions, both low to high and high to low [t_{sk(t)}]. ¹ tsk(prLH) or tsk(prHL) – Part-to-part skew is designed as the absolute value of the difference between the actual propagation delay for all outputs from device to device. The parameter is specified for a specific worst-case VCC and temperature. Furthermore, these values are provided by SPICE simulations. #### PARAMETER MEASUREMENT INFORMATION - NOTES: A. C_I includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \Omega$, $t_f \leq$ 2 ns, $t_f \leq$ 2 ns. - D. The outputs are measured one at a time with one transition per measurement. - E. Load circuit for A outputs also is used for CLKOUT; load circuit for B outputs also is used for SSCLK. Figure 1. Load Circuits and Voltage Waveforms NOTES: A. C_L includes probe and jig capacitance. tsk(LH) FSTA (Fast) tsk(LH) FSTA (Slow) **SSCLK** B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq 2$ ns. ^tsk(HL) FSTA (Fast) tsk(HL) FSTA (Slow) - C. The outputs are measured one at a time with one transition per measurement. - D. Load circuit for B outputs also is used for SSCLK. Figure 2. Load Circuit and SYSCLK to SSCLK + ΔB Skew Waveforms #### DISTRIBUTED-LOAD BACKPLANE SWITCHING CHARACTERISTICS The preceding switching characteristics table shows the switching characteristics of the device into a lumped load (Figure 1). However, the designer's backplane application is probably a distributed load. The physical representation is shown in Figure 3. This backplane, or distributed load, can be closely approximated to a resistor inductance capacitance (RLC) circuit, as shown in Figure 4. This device has been designed for optimum performance in this RLC circuit. The following switching characteristics table shows the switching characteristics of the device into the RLC load, to help the designer to better understand the performance of the GTLP device in this typical backplane. See www.ti.com/sc/gtlp for more information. Figure 3. High-Drive Test Backplane Figure 4. High-Drive RLC Network ## switching characteristics over recommended operating conditions for the bus transceiver function (unless otherwise noted) (see Figure 4) | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | EDGE RATE† | FSTA | түр‡ | UNIT | |------------------|------------------|----------------|------------|------|------|------| | ^t PLH | A | В | Fast | _ | 4.8 | ns | | ^t PHL | | | | | 4.2 | | | ^t PLH | | | Slow | _ | 5.6 | | | ^t PHL | | | | | 5.2 | | | ^t PLH | SYSCLK | В | Fast | - | 4.9 | ns | | ^t PHL | | | | | 4.5 | | | ^t PLH | | | Slow | ı | 5.5 | | | ^t PHL | | | | | 5.2 | | | t _r | Rise time, B and | SSCLK outputs | Fast | - | 0.9 | ns | | | (20% to | o 80%) | Slow | _ | 1.3 | | | +. | Fall time, B and | SSCLK outputs | Fast | _ | 2.3 | ns | | ^t f | (80% to | o 20%) | Slow | _ | 2.7 | | [†] Slow (ERC = H) and Fast (ERC = L) [‡] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. All values are derived from TI-SPICE models. ## DGG (R-PDSO-G**) #### PLASTIC SMALL-OUTLINE PACKAGE #### **48 PINS SHOWN** NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold protrusion not to exceed 0,15. D. Falls within JEDEC MO-153 #### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright © 2003, Texas Instruments Incorporated